In search of valuable habitats on the North Sea bottom

Building up a scientific basis for negotiating fisheries measures in the Belgian part of the North Sea is the task of the VISNAT2 project. The ultimate goal is to protect as much valuable seabed as possible, without harming important economic activities such as fishing.

© RBINS/K. Moreau

The European Habitats Directive and the Marine Strategy Framework Directive (MSFD) require Belgium to define areas to protect certain underwater habitats. More specifically, these are shallow sandbanks (Habitat 1110) and beds of gravel and shellfish (Habitat 1170). It is essential for the protection of these habitats that bottom disturbance caused by human activities (e.g. fishing) is excluded. The search for the best location for these protected areas seeks to maximise ecological value but also to minimise economic impact. In other words, we want to protect as much as possible without damaging important economic activities, such as fishing.

For the time being, 3 search zones have been demarcated in the Marine Spatial Plan. It is now up to researchers to identify the most ecologically valuable zones within these areas. This is done on the basis of an evaluation of biological data. For each of the zones, the economic importance for all Member States with fishing interests is calculated simultaneously. Data from both research lines will feed the MARXAN spatial planning tool. Through this tool 4 scenarios with proposals for bottom protection areas with fisheries measures will be developed, where the ecological value is high and the economic impact as low as possible.

© Something’s moving at sea : the marine spatial plan for 2020-2026 (https://www.health.belgium.be/sites/default/files/uploads/fields/fpshealth_theme_file/brochure_something_is_moving_at_sea_2020.pdf)

In order to make this process possible, four essential research tasks are being carried out together with the Research Institute for Agriculture, Fisheries and Food (ILVO):

  1. An update of the habitat suitability map for macrobenthos – invertebrates living in the seabed – and of the biological assessment map, which will allow the delimitation of the most ecologically valuable areas.
  2. An update of the fishing activity of the different Member States active in the Belgian part of the North Sea, necessary to map the most economically valuable zones for fishing.
  3. A risk analysis concerning the sensitivity of different habitat types to bottom-impacting fisheries.
  4. A demarcation of potential zones for fisheries measures based on the previous information and using the MARXAN spatial planning tool.

The aim of this project is to build up a scientific basis for the negotiation of fisheries measures in the Belgian part of the North Sea, as laid down in the Marine Spatial Plan. These negotiations will be conducted with Flanders and with the European member states, in order to present a Delegated Regulation for the European Commission. Such a Delegated Regulation contains rules that give further substance to previously adopted legislation, in this case in function of the protection of marine areas.

Project : VISNAT2
Duration : 2020-2021
Financing : FPS Health, Food Chain Safety and Environment
Collaboration : Reseach Institute for Agriculture, Fisheries and Food (ILVO)
Contact : Gert Vanhoey (gert.vanhoey@ilvo.vlaanderen.be), Steven Degraer (sdegraer@naturalsciences.be)

Text : Sofie Vandendriessche (ILVO) – Kelle Moreau (RBINS)

On the food-web ecology of offshore wind farms, the kingdom of suspension feeders

The rapidly developing offshore wind industry in the North Sea gives rise to concerns on the impact of wind turbines on the marine environment, including effects on ecosystem functioning. In a PhD study promoted by Ghent University and the Royal Belgian Institute of Natural Sciences, Ninon Mavraki studied the food-web ecology of offshore wind farms. The results show that they do influence the local food web properties, with the occurrence of fouling organisms slightly reducing the local annual primary producer (phytoplankton) standing stock and at the same time being an important food resource for certain fish species. Moreover, the importance of erosion protection layers around wind turbines was highlighted in this thesis, with high food web complexity, invertebrate species exploiting a wider range of food resources, and certain fish species remaining in the area for a prolonged time to feed.

In order to meet the growing demand for sustainable energy, the offshore wind industry is rapidly developing in the North Sea. As installing offshore wind turbines means introducing artificial hard substrates to soft-bottom areas, the practice has the potential to induce changes to the marine environment. Multiple vertebrate and invertebrate species colonise these structures. These don’t only change the local biodiversity but also influence the surrounding environment. These observations give rise to questions about the magnitude and mechanisms of these effects, including effects on ecosystem functioning.

In her PhD thesis, Ninon Mavraki investigated the effects of offshore wind farms on the local food web at two levels: a detailed food web structure on a gravity-based foundation in the Belgian part of the North Sea and a quantification of local effects on primary productivity and on fish. Colonising assemblages and fish were sampled along the entire depth gradient of the foundation to develop insights in the in situ food web structure, while laboratory experiments with fully colonised PVC panels allowed for detailed ex situ observation of the carbon assimilation by colonising species.

Food Web Structure

In the first part of the study, the food web structure of the colonising assemblages along the depth gradient of an offshore wind turbine, its erosion protection layer and the surrounding soft substrate were investigated. For this purpose, stable isotope analysis was performed on the organisms collected from the different zones. Stable isotopes are alternative forms of chemical elements (carbon and nitrogen in this case) with different molecular weights, that are found naturally. Their analysis is used to trace the flow of energy through food webs and assess trophic levels.

The results showed that structural community differences and associated differences in food web structure occur in different depth zones. The highest complexity was found at the erosion protection layer and the surrounding soft substrate, where organic matter accumulates. A species-specific study supported these results and demonstrated that the organisms occurring in these two zones exploited a wider range of resources compared to the organisms found higher up at the turbine. Most of the investigated invertebrate species were found to be trophic generalists, with depth-specific resource use strategies. Resource partitioning was detected both between and within the assemblages, contributing to the co-existence of species within and across the depth zones.

 

Carbon Assimilation and Primary Productivity

The second part of the study quantified the carbon assimilation by colonising assemblages that typically occur at offshore wind turbines. The results indicated that the blue mussel Mytilus edulis showed the highest carbon assimilation per unit of biomass, while the local amphipod Jassa herdmani population as a whole assimilated the highest amount of carbon. These species contributed the most to the local consumption of the primary producer standing stock (phytoplankton, or ‘vegetable’ plankton), since their assimilation was ca. 97 % of the total faunal carbon assimilation. The results of this experiment were upscaled to the total number of all the currently installed turbines in the Belgian part of the North Sea, leading to an estimated 1.3 % of the local annual primary producer standing stock that is grazed upon by M. edulis and J. herdmani. Also when the amount of carbon is taken into account that is not assimilated by the soft sediment fauna due to the loss of their habitat by the installation of offshore wind turbines, the data suggest that the total carbon assimilation increases remarkably in presence of offshore wind turbines and their colonisers.

Fish

The feeding ecology of fish species that are attracted to offshore wind farms was also studied. To this end, stomach content and stable isotope analyses were performed to respectively investigate the short- and long-term dietary composition of a selection of abundantly present fish species. Species that are highly associated with the erosion protection layers, living on and/or near the basis of the wind turbines (shorthorn sculpin Myoxocephalus scorpius, pouting Trisopterus luscus and Atlantic cod Gadus morhua), appeared to use these artificial reefs as feeding grounds for a prolonged period, feeding on the abundant and energy-rich colonising species J. herdmani and Pisidia longicornis (long-clawed porcelain crab). Horse Mackerel Trachurus trachurus was shown to feed only occasionally on the colonising fauna, using the artificial reefs as oases of enhanced resources. These dietary results confirm the hypothesis that their local production could potentially be increased. However, this study did not support such statement for truly pelagic fish species. The Atlantic mackerel Scomber scombrus for instance did not appear to use the artificial habitats of offshore wind farms as feeding grounds at all. The analyses for this species indicated a diet based on zooplankton.

 

After a scientifically highly qualitative and visually very clear presentation of her thesis ‘On the food-web ecology of offshore wind farms, the kingdom of suspension feeders’ (online and live streamed on YouTube due to Covid-19 restrictions), prof. dr. Steven Degraer and prof. dr. Jan Vanaverbeke (RBINS, UGent) and the members of the Examination Commission (president: prof. dr. Ann Vanreusel, UGent; secretary: prof. dr. Tom Moens, UGent) proudly attributed the title of Doctor in Science – Marine Science to Ourania (Ninon) Mavraki (formerly Master in Marine Biology, University of Patras, Greece) on Monday 18 May 2020.

Congratulations Ninon!

A rare privilege: Ninon controls the research vessel RV Simon Stevin. 😉 (© KBIN/N. Mavraki)

Something is moving at sea: new marine spatial plan 2020-2026

On 20 March 2020, the new Belgian marine spatial plan (2020-2026) came into force. The plan provides a spatial arrangement, integrating the various utility functions of the Belgian part of the North Sea.

 Did you know that Belgium has 37% marine protected area, far above the European average of 8.9%? And that, in relation to the surface area, our country provides more offshore space for renewable energy than any other country in the world?

Nature conservation, green energy, shipping, fishing, sand extraction, defence and many more activities take place in our little Belgian part of the North Sea on a daily basis. To ensure that all these activities are safely combined, the federal government draws up a marine spatial plan every six years. On land this kind of spatial planning has existed for a long time, but at sea it is quite unique in the world. Many countries come to Belgium to see how we do it in order to attribute a rightful place at sea to all activities and stakeholders.

More info and the complete marine spatial plan.

What’s new in the plan?

The first plan covered the period 2014-2020. On 20 March 2020, the Marine Spatial Plan 2020-2026 came into force. This new plan 2026 foresees, among other things, these novelties:

  • a second offshore energy zone, the Princess Elisabeth zone, which aims to almost double the energy capacity (from 10% of Belgium’s electricity needs at the end of this year to 20% by 2025/2026).
  • an additional nature reserve on the Dutch border
  • three new search zones for soil protection measures
  • five specific zones within which commercial and industrial activities can be developed. Sustainable development, in particular, will be at the heart of these areas.

Philippe De Backer: “Belgium was a pioneer with a first marine spatial plan and we are now the first to revise this plan. It’s been a long but exciting journey where the balance between economy, ecology and safety was central. I would like to thank all stakeholders, citizens and organisations for their constructive contribution to this process and I am satisfied that this new marine spatial plan will allow the North Sea to develop further in terms of the blue economy, with respect for the marine environment and the protected Natura 2000 nature areas.”

A Brand New Brochure

The brochure ‘Something’s moving at sea. The marine spatial plan 2020-2026‘ contains a lot of facts and summarises the marine spatial plan 2020-2026 in an accessible way. It gives an overview of the most important activities in our North Sea on the basis of specific maps. You can also test your knowledge with a short quiz.

Order the brochure at the FPS Public Health, Food Chain Safety and Environment.

The Marine Atlas project

In order to make the geographical information from the Marine Spatial Plan accessible to a broad community of potential users, it was made available on the marineatlas.be website. Currently, the marine atlas contains validated and fully documented geographical layers from the Belgian marine spatial plans adopted by royal decrees in 2014 and 2019. The content will be regularly expanded with data on the different themes of the European ‘INSPIRE’ Directive, such as environmental monitoring, energy sources and energy production, geology, etc. to name but a few. The Marine Atlas is a joint initiative of several Belgian federal administrations and is developed and maintained by a team of experts from the Scientific Service Management Unit of the North Sea Mathematical Model (MUMM) and the Geocell of the Royal Belgian Institute of Natural Sciences.

 

The marine spatial plan was drawn up by the Marine Environment Department of the FPS Public Health, Food Chain Safety and Environment on behalf of the Minister for the North Sea, Philippe De Backer. Because of its major impact, it was drawn up in close collaboration with all those involved. NGOs, companies, government bodies, interest groups and citizens passed on their proposals and comments during two consultation rounds. The sustainability aspect was also given extra attention, for example through the Strategic Environmental Impact Assessment (SEA). After the contributions had been processed, the new MSP was signed by the King on 22 May 2019.

Text: Jesse Verhalle, Mieke Van de Velde, Kelle Moreau

Does washing of exhaust gases from ships contribute to acidification of the southern North Sea?

Sulphur Oxides (SOx) in atmospheric ship emissions resulting from the burning of fuel are known to be harmful to human and ecosystem health. Since January 1st, 2020, the International Maritime Organisation (IMO) further lowered the limit for sulphur content in ship fuel, resulting in an increased number of exhaust gas cleaning systems (scrubbers) installed on board of ships. These systems reduce the sulphur content in the air emissions, but some discharge the SOx directly in the water. Here they contribute to ocean acidification and potentially create problems for a range of marine organisms. The Royal Belgian Institute of Natural Sciences used a biogeochemical model to quantify the potential impact in the southern North Sea. The results showed that the largest changes occur in areas of high traffic density, such as along the Belgian and Dutch coasts and in the vicinity of large harbours, where the changes are sufficiently big to contribute to environmental degradation and a loss of economic potential.

Belgian waters are characterised by very dense maritime traffic. The image depicts ships anchored in an anchor zone, waiting for access to a nearby port (©RBINS/MUMM).

Sulphur Oxides (SOx) in atmospheric ship emissions, resulting from the burning of fuel, are known to cause respiratory problems, lead to more acid rain and contribute to ocean acidification. As such they are harmful to both human and ecosystem health. To address this problem, the International Maritime Organisation (IMO) further lowered the limit for sulphur content in ship fuel to 0.5% since January 1st, 2020 (from 4.5% in 2005-2011 and 3.5% in 2012-2019). The regulations are even more strict in the North Sea Sulphur Emission Control Area, to which the intensively navigated Belgian waters belong, where the sulphur concentration in the fuel cannot exceed 0.1%. To comply with the regulations, solutions include the use of low sulphur fuel and the application of other methods that limit the SOx air emissions caused by the burning of high sulphur fuel to the same extent.

Scrubbers

Due to the price difference between high and low sulphur fuels, the installation of exhaust gas cleaning systems known as scrubbers, is economically more cost-effective than reducing the sulphur content in the fuel (in normal economic conditions). Therefore, the new regulations tend to result in an increased number of scrubbers being installed on board of ships. Scrubbers are devices that ‘wash’ the exhaust gases of ships and remove certain particulates or gases from it, in this case the sulphur oxides. The resulting wash water can either be collected on board (closed-loop scrubber) or be discarded in the open sea (open-loop scrubber), whereas hybrid scrubbers can switch from open to closed modes. The cheaper open-loop scrubbers are more commonly applied than closed-loop scrubbers, leading to a displacement of the sulphur emissions from the air to the water.

Density map of marine traffic (adapted from marinetraffic.com), showing the main shipping routes and the very dense traffic in the study area (black frame).

Ocean acidification

Despite the positive effect of scrubbers on air pollution, questions arise on their potential impact on the marine environment. When the wash water from open-loop scrubbers is discharged into the sea, the SOx are neutralized by the sea water. This however lowers the pH of the sea water (a lower pH means more acidic water) and thus contributes to the acidification of the ocean. This process adds to the ongoing climate-change driven ocean acidification resulting from the uptake of atmospheric CO2. Negative effects of ocean acidification have already been observed affecting marine organisms such as clams, oysters, prawns and even fish. More acidic waters compromise the creation of shells and skeletons and can lead to the dissolution of existing structures. Furthermore, some studies have shown effects on the ability of fish to smell, hear and see, and their general cognitive functioning. More acidic waters may also have an economic impact for fisheries and aquaculture, as quality loss has been shown for certain species of prawns and clams, in terms of taste, texture, appearance and nutritious properties.

Situation in the southern North Sea

On behalf of the Federal Public Service Mobility and Transport, the Royal Belgian Institute of Natural Sciences performed a study in which an advanced biogeochemical model was used to quantify the potential impact of SOx discharges from maritime traffic on water acidification in the southern North Sea. “In the English Channel and the Southern North Sea, the results show a pH decrease between 0.004 and 0.010 pH units (on a scale of only 14 units) among different maritime traffic scenarios” says Valérie Dulière, lead author of the study. “In areas of high traffic density, such as the shipping lanes along the Belgian and Dutch coasts and in the vicinity of large harbours, the pH changes can be 5 to 12 times larger than average. The modelled changes indicate a potential negative impact on the water quality in ports, estuaries and coastal waters” Dulière adds.

Maps of yearly averaged pH values as estimated by the model in the study of Dulière et al. (2020) for different scenarios of SOx contribution from marine traffic. The redder, the more acidic the water. The top left figure shows the reference scenario with no SOx contribution from maritime traffic, while the top right (2019_15%) shows the same traffic density but with 15% of ships using an open-loop scrubber. The 2020- and 2030-scenarios below assume traffic densities as expected (under normal economic circumstances) in 2020 and 2030, with the 35%- and 0%-scenarios representing 35% and 0% of the fleet being equipped with open-loop scrubbers, resulting in four combinations (2020_35%, 2020_0%, 2030_35% and 2030_0%). From these simulations it becomes clear that an increase in maritime traffic does not really influence the ocean acidity (compare 2020_0% and 2030_0% with reference), while an increase in the use of open-loop srubbers does (compare 2019_15%, 2020_35% and 2030_35%) with reference. An increase of both the maritime traffic and the use of open-loop scrubbers obviously has the highest impact (compare 2030_35% with other scenarios).

The estimated pH decrease attributed to the shipping sector is also significant when compared to the ongoing acidification resulting from climate change (0.0017-0.0027 pH units per year). The pH change in response to SOx pollution due to shipping with open-loop scrubbers is 2 to 4 times bigger than the contribution of climate change when averaged over the whole study area, and up to 10 to 50 times bigger in more local areas. The impact of ocean acidification due to maritime traffic should therefore be considered in ecosystem assessment studies, together with climate change.

The full report of the study can be consulted here: Potential impact of wash water effluents from scrubbers on water acidification in the southern North Sea_Final report.

Videos of the presentation of the study are also available:

part1_Scientific background and study context

part2_Methodology and assumptions

part3_Results and conclusions

Given the important modelling conclusions, a precautionary approach is recommended. Policy, science and industry continue to work together to find ways to reduce the impact of sulphur compounds in the emissions and wash water discharges of ships.

 

After this study was completed, the COVID-19 crisis started to reshape the year 2020 in an unforeseen way. It is observed that the ship traffic density estimation for the year 2020 on which the calculations were based to estimate the quantity of SOx in emissions and wash water discharges is lower than expected. Nevertheless, this study still brings some very useful information on how the use of open-loop and hybrid (set in open-mode) scrubbers can contribute to the acidification of the southern North Sea, in a business as usual situation. It is also noted that the current unfavorable economic climate led to the cancellation of many orders for scrubber installations, and it is hoped that the companies concerned will consider switching to the use of low sulphur fuel when resuming normal operations.

The Royal Belgian Institute of Natural Sciences is also heavily involved in the monitoring of the sulphur emissions from ships at sea. More information on this can be found on the new website of the aerial survey team, the video that focuses on sulphur emission monitoring, and in the annual report 2019.

Public consultation ‘Zeeboerderij Westdiep’

Codevco V BV has submitted an application for the authorization and permit for the construction and operation of a seafood farm in the Belgian part of the North Sea, and has applied for an authorization to carry out a geotechnical and geophysical survey during the preparatory phase. This application is subject to an environmental impact assessment procedure.

The application, the non-technical summary, the environmental impact statement and a concept of the appropriate assessment can be consulted from 9 May to 7 June 2020 at the offices of MUMM at Brussels (Vautierstraat 29, 1000 Brussels; mdevolder@naturalsciences.be; tel 02/627 43 52) or at Ostend (3de en 23ste Linieregimentsplein, 8400 Ostend; jhaelters@naturalsciences.be; tel. 059/24 20 55), by appointment only and during office hours between 9:00 am and 5:00 pm, and depending on the prevailing measures imposed by the government with regard to Covid-19. The application can also be consulted at every coastal community, during office hours. The list of locations and corresponding contact details can be found here: Coastal_Communities_2020.

The application is also available electronically:

Any interested party may submit its views, comments and objections to Ms Brigitte Lauwaert by letter or email until 22 June 2020:

MUMM Attn. Ms. Brigitte Lauwaert

Vautierstraat 29, 1000 Brussels

blauwaert@naturalsciences.be

 

Update August 2020:

A fisheries report is now also available: Fisheries Report_Seafood Farm Westdiep

Aerial Surveys over the North Sea in 2019

Framed in the national aerial survey programme, the scientific service MUMM performed a total of 246 flight hours over the North Sea in 2019. This contribution lists the most important results, with focus on the core tasks: surveillance of marine pollution and monitoring of the marine environment. Thirteen cases of operational discharges by ships have been observed, and suspect sulphur values have been measured in the smoke plumes of 51 vessels. With this sulphur emission monitoring effort, Belgium keeps on playing an international pioneering role which keeps on arousing interest, even from far outside Europe. The plane also successfully participated in an internationally coordinated surveillance mission of the oil and gas installations in the central part of the North Sea. Furthermore, some important marine mammal counts were performed, and windmill construction sites monitored.

The Coast Guard plane in action. © Tim Corbisier

Overview of Surveillance Flights

A total of 246 flight hours have been performed in the framework of the national North Sea aerial survey programme in 2019. This programme is organised by the scientific service MUMM (Management Unit of the Mathematical Model of the North Sea) of the Royal Belgian Institute of Natural Sciences, in collaboration with the Ministry of Defence. Most of the flight hours concerned national flights (183 hours):

  • 173 hours in the context of the Belgian Coastguard
    • 129 hours of pollution control: 67 hours for the detection of discharges of oil and other harmful substances (MARPOL Annex I, II and V) and 62 hours for the monitoring of sulphur emissions from ships (enforcement of MARPOL Annex VI / SECA – Sulphur Emission Control Area, see below);
    • 43 hours of fishery control, on behalf of the Flemish Fishery Inspection Services;
    • 1 hour in response to a specific call for the search of a whale
  • 10 hours for marine mammal monitoring

A smaller part (63 hours) was spent on international missions, of which 35 hours on sulphur emission monitoring in Dutch waters on behalf of the Dutch competent authorities, 24 hours on the Tour d’horizon-mission for surveillance of offshore oil and gas installations in the North Sea (an international mission framed in the Bonn Agreement), and 4 hours for an international oil combating exercise organised by the Netherlands.

Operational Discharges from Ships

Fortunately, the Belgian waters have not been affected by pollution as a result of shipping accidents (accidental pollution) in 2019. On the other hand, 13 cases of operational discharges from ships have been observed:

  • One minor oil spill was observed in front of Ostend. However, the slick could not be linked to a ship.

  • Twelve spills of other harmful substances than oil (MARPOL Annex II). In one of these cases, a detection by night, a link could be made with a ship. A port state control was requested in the next port of call. This made clear that it consisted of a permitted discharge of palm oil (MARPOL Annex II).

These figures show that although the number of oil spills has greatly decreased in the last decade (first graph), the number of spills of other harmful substances is still a common problem, and even appears to rise (second graph).

Oil Pollution in Belgian Ports

During transit (from Antwerp airport – the home base of the aircraft – to the North Sea), 2 oil spills have been observed in the port of Antwerp. These spills were immediately reported to the competent authorities to ensure follow-up.

Monitoring of Sulphur Emissions from Ships at Sea

In order to monitor compliance with the stringent fuel sulphur content limits for ships sailing in the North Sea Sulphur Emission Control Area, 96 hours of sniffer flights were conducted over the Belgian and Dutch waters. Of the 1241 vessels that were inspected at sea, 51 showed suspiciously high sulphur values in their exhaust plumes. These cases were systematically reported to the competent maritime inspection services for a further follow-up in port.

At this moment Belgium is one of the few countries performing such offshore monitoring of sulphur emissions of individual ships. The obtained experience and results, also in terms of subsequent port inspections of suspected vessels and pursuit of offenders, have led to considerable interest in Europe and beyond. In this context, the RBINS scientists participated in various international forums in 2019, including the « Shipping and Environment Conference » in Sweden, the « Sulphur Experts Meeting » in Denmark and the « European Maritime Safety Agency Surveillance Training » in the Netherlands. At  the BONN Ministerial Meeting 2019 The Belgian experience was a major driver to include MARPOL Annex VI in the work package area of the Bonn Agreement.

Fortunately, most emission plumes from ships at sea are less black and polluting than this one. © RBINS/MUMM
Approaching a ship for sulphur emission control. © RBINS/MUMM

International ‘Tour d’Horizon’ Mission

During the annual TdH-mission for the surveillance of offshore platforms in the central part of the North Sea (in Dutch, German, Danish, Norwegian and British waters), performed in the framework of the Bonn Agreement, the Belgian surveillance aircraft detected 32 pollutions, 23 of which concerned oil detections that could be directly linked to offshore installations. 4 other detections could also be linked to platforms but could not be observed visually due to heavy fog. The 5 remaining detections – 3 oil spills, 1 detection of another harmful substance, and 1 detection of an unknown pollutant – were made without a vessel or platform in the vicinity. All these detections were systematically reported for further follow-up to the competent coastal State, in accordance with agreed international procedures.

Oil spill connected to an offshore oil installation, as observed from the surveillance aircraft during the international TdH mission in 2019. © RBINS/MUMM

Participation in International Oil-Combating Exercise

In April, the aircraft took part, together with the Dutch and German coastguard aircrafts, in an international oil combating exercise organized by Rijkswaterstaat (The Netherlands). The purpose of this exercise was to improve the knowledge on impact and efficiency of the use of dispersants, with manual removal being the first option in in Belgium and The Netherlands). The aircraft played an important role in mapping and monitoring the dispersed versus the naturally weathered oil spill at sea.

Participation of the aircraft in the international oil-combating exercise in the Netherlands. © RBINS/MUMM

Marine Mammal Monitoring off the Belgian Coast

In June, 2 seals and 52 harbour porpoises (including 6 juveniles) were spotted. August brought along 5 seals and 42 harbour porpoises (also including 6 juveniles). The resulting estimate of average density was 0.72 (0.41-1.27) and 0.62 (0.38-1.00) harbour porpoises per km² of sea area, respectively, or about 2,500 and 2,100 animals.

In 2019, no less than 3 new offshore wind farms were built in het Belgian part of the North Sea. The marine mammal monitoring campaigns are carried out to monitor the environmental effects of these wind farms. The aircraft monitored to what extent the permit conditions regarding the correct placement of a « bubble curtain » were respected, which ensures a reduction in noise disturbance for marine mammals among others.

Monitoring of construction activities in the wind farms: the use of a bubble curtain during piling activity. © RBINS/MUMM
The Coast Guard plane in action. © Tim Corbisier

 

In order to clearly and completely summarise for the press and public the activities of the RBINS (MUMM) surveillance aircraft, the legal frameworks within which these activities take place, and the technical background of the tasks carried out, MUMM published a new website in March 2020. Be sure to watch the video that focuses on sulphur emission monitoring, one of the trademarks and pioneering tasks of the Belgian air surveillance.

Tracking Predators to Protect Southern Ocean Ecosystems

An international group of scientists has mapped the « hotspots » of biodiversity in the Southern Ocean around Antarctica. As animals go to places where they find food, the researchers managed to do this by collating electronic tracking data of more than 4,000 individuals of 17 species of predators. By regularly analysing such large datasets, we can better protect vulnerable ecosystems.

In a rapidly changing world, we need to know which areas warrant protection from existing, developing and forthcoming threats. This is hard to do objectively in the vast realm of the oceans, and particularly so in the remote Southern Ocean around Antarctica. A paper published this week in the journal Nature (together with a companion data paper in the journal Scientific Data) describes a novel solution to this problem : using electronic tracking data from birds and marine mammals. The Antarctic Biodiversity Portal managed by RBINS was closely involved in collecting, cleaning up and standardizing these data.

The solution relies on a simple principle: animals go to places where they find food. So, identifying areas of the Southern Ocean where predators most commonly go also tells us where their prey can be found. For example, humpback whales and penguins will go to places where they can feed on krill, whereas elephant seals and albatrosses go where they can find fish, squid, or other prey. If all these predators and their diverse prey are found in the same place then this area has both high diversity and abundance of species, indicating that it is of high ecological significance.

Adélie Penguin (Pygoscelis adeliae) equipped with electronic transmitter (©Judy Rebekah Clarke)
Southern Elephant Seal (Mirounga leonina) equipped with electronic transmitter (© Clive R. McMahon)

Joining Antarctic Forces

The project was conducted by the Scientific Committee for Antarctic Research (SCAR), with support from the Centre de Synthèse et d’Analyse sur la Biodiversité, France, WWF-UK and many other partners.

SCAR engaged its extensive network of Antarctic researchers to assemble existing Southern Ocean predator tracking data.  The result : an enormous database containing tracking data of over 4000 predators from 17 species, collected by more than 70 scientists across 12 national Antarctic programs. « The SCAR Antarctic Biodiversity Portal, that is managed by the Royal Belgian Institute of Natural Sciences (RBINS), was closely involved in collecting, cleaning and standardizing these data. » says RBINS scientist Dr. Anton Van de Putte, who co-authored both papers. He acts as a Belgian scientific representative for both SCAR and the Commission for the Conservation for Antarctic Marine Living Resources (CCAMLR).

4,060 tracks of Antarctic predators from 17 different species. The data indicate the « hotspots » where Antarctic predators go in search of prey (© Hindell et al. 2020, Nature)

Even this impressive dataset does not directly represent all Southern Ocean predator activity, because it is impossible to track all the breeding colonies of every species. « To overcome this, sophisticated statistical models were used to predict the movements for all known colonies of each of the 17 predator species across the entire Southern Ocean. These predictions were combined to provide an integrated map of those areas used by many different predators with diverse prey requirements. » Van de Putte adds.

Current and Future Areas of Ecological Significance

The most important of these areas – areas of ecological significance – are scattered around the Antarctic continental shelf and in two wider oceanic regions, one projecting from the Antarctic Peninsula engulfing the Scotia Arc, and another surrounding the sub-Antarctic islands in the Indian sector of the Southern Ocean.

Currently, the existing and proposed Marine Protected Areas largely overlap with the Areas of Ecological Significance. (© Hindell et al. 2020, Nature)

Marine Protected Areas (MPAs) are a crucial tool in the conservation management toolbox. Existing and proposed MPAs are mostly found within the areas of ecological significance, suggesting that they are currently in the right places. Yet when using climate model projections to account for how areas of important habitat may shift by 2100, the existing MPAs with their fixed boundaries may not remain aligned with future important habitats. Dynamic management of MPAs, updated over time in response to ongoing change, are therefore needed to ensure continued protection of Southern Ocean ecosystems and their resources in the face of growing resource demand by the current and future generations.

Van de Putte : « This kind of study indicates the importance of international cooperation and sharing scientific data. Only by combining the data and jointly analyze them, we can come to these results. I look forward to also sharing our future findings and thus to keep contributing to the preservation of the unique Antarctic ecosystems. »

Watch the timelapse video of the data: youtu.be/BUgYD1dQwBI

Seals in Need of Rest: Keeping Distance is Crucial

Seals have become more and more numerous along our coast in recent years, which also increases the chance that people bump into one on the beach. Many people erroneously assume that a seal on dry land is in trouble anyway, but mostly this is not the case. When a holiday period overlaps with a period when more seals are resting on the beach, the scientists of the Royal Belgian Institute of Natural Sciences (RBINS) and Sea Life Blankenberge are inundated with worried phone calls. Yesterday was such a day … Unfortunately, many reports also mention that the animals are being harassed by humans. Tragically, often by people with good intentions, who do not realize that their actions mainly cause stress to the animals, resulting in disturbance and sometimes even lower survival chances. The advice is therefore always that seals on the beach should be given rest, with a distance of at least 20 m from the animals. Whether the seal is sick or healthy makes no difference.

Grey seals © RBINS/Kelle Moreau

Nowadays, more seals are reported along the Belgian coast every year, following the positive trend recorded in the Netherlands, N France and SE England. Especially Harbour seals Phoca vitulina (even small groups) are seen daily, and the Grey seal Halichoerus grypus has also become established. It is perfectly normal that many people do not know how to interpret the presence of a seal on the beach, for them it is an unknown phenomenon. However, coastal areas, and therefore beaches, form an important part of the habitat of seals; they are not dolphins or whales that cannot survive outside the water. When a seal is on the beach, it does not necessarily mean that it is in trouble. More often than not this is not the case.

Sick versus Healthy

In order not to stress seals unnecessarily, but also in order not to overload emergency services and animal shelters, it is important that beachgoers are not only aware that seals nowadays form an integral part of the fauna of the Belgian North Sea and beaches, but also know how to distinguish healthy from sick seals. More and more coastal municipalities are putting effort into providing such information on panels and banners. In summary, healthy seals often adopt the typical « banana posture » (with head and tail raised), usually show no wounds, are alert and growl when approached. Sick or injured seals look much more passive, they adopt a « flat posture », show wounds and/or cough. In the latter case, and certainly in the case of a combination of these symptoms, it is worth contacting local emergency services or a specialised shelter (in Belgium, this is Sea Life Blankenberge).

Grey Seals at the End of Winter

At the end of winter, however, there may also be seals on the beach that are essentially healthy but deviate from the typical image of a healthy seal. These are often adult males of the Grey seal that are exhausted after the mating season, and may therefore appear skinny and adopt a « flat posture ». Grey seals mate mainly in December – January, and the males engage in impressive and energy-consuming fights to gain the preference of the females. Especially late and inexperienced males – who didn’t get what they were looking for during the peak of the mating season and have kept up their mating efforts and fighting spirit for longer – can now lie tired on our beaches. All they need is rest. Giving them food is out of the question, and they don’t need to be made wet (again: they’re not dolphins or whales). Moreover, because of their size, weight and impressive teeth and claws, it is not obvious to take care of these animals in a shelter. Enjoy their presence at a distance, suppress the urge for a « sealfie » (seal-selfie), and be sure to keep your dog(s) on a leash on a beach where there is a seal!

More information about seals in Belgium can be found in the annual marine mammal reports of the Royal Belgian Institute of Natural Sciences (available for 2014 to 2018, the 2019 edition is in preparation), at http://www.marinemammals.be/reports.

First Launch of the New Research Vessel Belgica

The future Belgian research vessel Belgica was launched for the first time on 11 February 2020 from the Freire Shipyard in Vigo, Spain. An important milestone following the keel laying, the equivalent of the laying of the foundation stone of a building, just under a year ago. The ceremony took place in the presence of the various project partners: the shipyard, the Federal Science Policy Office (BELSPO), Defence and the Royal Belgian Institute of Natural Sciences (RBINS). Now the ship will be further finished and provided with all the necessary equipment. The delivery of the ship in Zeebrugge is scheduled for the last quarter of this year. Then it will officially be put into service. The cost of the project amounts to approximately 54 million euros (VAT included).

The new RV Belgica is launched for the first time, Vigo (Spain), 11 February 2020 (© Belgian Navy/Jorn Urbain)

The first launch of a new ship (where the ship is literally transferred from land to water for the first time) is always considered a joyful event, which is celebrated with a formal ceremony. This includes speeches by the various project partners on the Spanish and Belgian sides, the actual launch, the signing of the book of honour and the exchange of gifts.

After a welcome speech by Mr Guillermo Freire, General Manager of Freire Shipyard, the representatives of the Belgian delegation were the first to address those present. Mr Pierre Bruyere, Chairman of the Executive Committee of BELSPO, outlined the path that led to the current collaboration and contract with Freire Shipyard, and stressed that in 2020 we will also be celebrating 50 years of continued funding of marine sciences through BELSPO’s research programmes. The arrival of the new RV Belgica will be a highlight of this celebration. Mrs Patricia Supply, General Director of RBINS, emphasized among other things the long history of marine scientific research at this institute. Many milestones were covered: from the first Belgian Antarctic expedition (1897-1899) led by Adrien de Gerlache, through the first standardised sampling of Belgian marine fauna (1898-1939) by Gustave Gilson, to the accommodation of the MUMM scientific service (Management Unit of the Mathematical Model of the North Sea) within RBINS in 1997. Division-Admiral Yves Dupont, head of the Systems Division of the General Directorate of Material Resources of Defence, then praised the way in which the close cooperation of the past years within the framework of the current RV Belgica led to an increasing knowledge of the sea, which also contributes to the success of the activities of the Navy. The knowledge that the new RV Belgica will acquire, and the continued exchange of scientific and military information, will also remain indispensable in this context.

Finally, the Belgian representatives congratulated Freire Shipyard not only on the successful way in which they are implementing the new RV Belgica project, but also on the 125th anniversary of the shipyard, which will also be celebrated in 2020.

Mrs Patricia Supply, General Director of RBINS, addressed those present (© Belgian Navy/Jorn Urbain)

Background and Milestones of the Construction and Naming Process

After 36 years of service, with more than 1,000 scientific expeditions and more than 900,000 kilometres travelled on the counter (>22.5 times around the earth), the current Belgian oceanographic research vessel A962 Belgica (built in 1984) was in need of replacement. Therefore, on 28 October 2016, the federal government decided to build a new modern research vessel. The contract for the design and construction of the ship was awarded by the Minister of Science Policy to the Spanish shipyard Freire Shipyard (Vigo) and the Norwegian ship designer Rolls-Royce Marine AS (which in the meantime became part of the Norwegian Kongsberg Maritime).

The Directorate General Material Resources (DG MR) at the Ministry of Defence has a solid knowledge of tendering procedures. The latest acquisition of two new patrol vessels and the renewal of the mine countermeasure capacity, among other things, fitted nicely with the acquisition of this new research vessel. It therefore went without saying that the Ministry of Defence and the Ministry of Science continued to work closely together on the acquisition and monitoring of the design and construction process. Since the contract was awarded, a great deal has been achieved: the detailed plans for the vessel were drawn up, scale models were tested, and on 13 February 2019 the cutting of the steel for the construction of the new vessel was started. The keel laying took place on 27 March 2019. Less than a year later, the new RV Belgica can be launched for the first time! Afterwards, the ship will be further finished and provided with all the necessary equipment. At the end of 2020, as planned, it will be delivered in its home port of Zeebrugge to support the marine research community for the next thirty years. After 36 years of loyal service, the current RV Belgica will then end its research activities for good.

In the meantime, the name of the Belgian oceanographic ship was also determined. After a naming competition with several phases (submission of proposals by secondary schools, first selection of admissible names by a professional jury, followed by a public online vote) it became clear that the new ship will honour the Belgian tradition and will also go through life as RV Belgica. The Federal Minister for Science Policy announced this on 25 April 2019 in the presence of the winning class 1LA of Athénée Maurice Destenay in Liège, after which students and minister could enjoy a sea voyage on the current A 962 Belgica.

Ready for launch! From left to right: Division-Admiral Yves Dupont (Defence), Mr. Pierre Bruyere (BELSPO), Mrs. Patricia Supply (RBINS) and Mr. Guillermo Freire (Freire Shipyard) (© RBINS/Kelle Moreau)

Future of the New RV Belgica

Compared to its predecessor, the new RV Belgica is larger (71.4 m compared to 50 m) and offers more space to the scientists (a doubling of laboratory space with a capacity to take up to 28 scientists on board). The new RV Belgica will guarantee compliance with our country’s national and international obligations and ensure continuity in the support of marine sciences. In this way, the new RV Belgica will continue the important role of the current A962 Belgica in monitoring the state of the Belgian and surrounding marine waters, as well as in fundamental scientific research.

The new Belgica will also be equipped with state-of-the-art scientific equipment that will allow samples to be taken up to a depth of 5,000 m. The new vessel will also be a silent vessel (important for fisheries research, among other things) with a light ice reinforcement to be able to conduct research in Arctic areas during the summer. Although the North Sea will remain the main focus area of the new vessel, the research area extends further than the current RV Belgica: northwards to above the Arctic Circle, further south including the Mediterranean and Black Seas and westwards to the Atlantic Ocean. The ship will have an autonomy of 30 days and will carry out up to 300 days of research at sea each year.

The new RV Belgica before the launch (© Belgian Navy/Jorn Urbain)

International Dimension

The international dimension of science will also be given due attention in the agenda of the new RV Belgica. Just as the current RV Belgica already formed part of the European EUROFLEETS network (in which international scientists can obtain shipping time on foreign research vessels), the new RV Belgica will also remain active within this network. Also under the umbrella of the European Marine Board, Belgium (represented in this dossier by Dr. Lieven Naudts, ‘New RV’ project manager for RBINS) participated in a study on the status of the European fleet of research vessels, and helped determine the key role these vessels play now and in the future in the pursuit of a better understanding of the oceans, the functions they can perform for us, and the preconditions within which human activities can be permitted. A ‘European Marine Board Position Paper’ on this theme was published in the autumn of 2019. Since June 2019, Dr. Naudts also assumes the position of chairman of the European Research Vessel Operators group (ERVO).

Thanks to the new RV Belgica and the European framework, Belgium remains at the forefront of sea-related science and technology, helping to ensure that Europe can remain a world leader in marine science and exploration.

The new RV Belgica during the festive launch (© Belgian Navy/Jorn Urbain)

The ‘NewRV’ project became reality thanks to the collaboration between the Royal Belgian Institute of Natural Sciences (RBINS), the Ministry of Defence and the Federal Science Policy Office (BELSPO). The new Belgica will be owned by the Belgian State, represented by the Federal Science Policy Office (BELSPO). Operational management will be provided by the Royal Belgian Institute of Natural Sciences (RBINS) in collaboration with Defence and a private operator.

More information about the ‘NewRV’ project and the technical specifications of the new ship can be consulted at http://www.belspo.be/NewRV, where the construction process can also be followed.