2019 JJ Mehta Award for outstanding contributions to the study of cohesive sediment dynamics goes to RBINS-colleague Michael Fettweis

« Dear Michael, it is my great pleasure to inform you that you have been selected to receive the 2019 JJ Mehta Award for outstanding contributions to the study of cohesive sediment dynamics at the upcoming INTERCOH 2019 meeting in Istanbul, Turkey. » These were the words with which Carl T. Friedrichs, Professor, Research Coordinator & Associate Director of CBNERR-VA at the Virginia Institute of Marine Science, United States, announced the great news to our colleague Michael Fettweis.

The Mehta Award is a given to an individual who has made significant contributions to the advancement in the theory or application of cohesive sediment transport in the marine or aquatic environment. The award, which carries a plaque and a financial prize, is named in the memory of Jayant J. Mehta (1916-1996) by his son Ashish J. Mehta. Jayant J. Mehta (MS, MIT, 1938) was a pioneer in the inception and growth of the petrochemical industry in India, contributing significantly to the country’s industrial expansion starting in the 1970s.”

The selection committee was especially impressed by Michael’s record of combining diverse field observations and innovative analyses to successfully characterize naturally complex cohesive sediment processes while recognizing and quantifying the inherent uncertainties involved. As an awardee, Michael was asked to present an extended keynote lecture during the conference.

The award was presented at the INTERCOH 2019 conference banquet on the evening of Tuesday October 15th, 2019.

Congratulations on this well-deserved recognition of your work, Michael!

RBINS and the Next Generation European Research Vessels

With the construction of the new Belgian Ocean Class RV that is currently ongoing, Belgium is well preparing for a bright ocean science future.

In a new Position Paper, the European Marine Board together with the European Research Vessel Operators (ERVO) group provide a comprehensive look at the European research vessel fleet. The publication presents an overview of the current fleet, its capabilities, equipment and management. It also looks to the future, highlighting what will be needed to ensure that the European fleet can continue to provide the same high level of support to science, in particular in specialized areas such as the deep-sea and Polar regions. It also goes beyond the fleet itself, to consider the training of fleet personnel, fleet management, and the role of research vessels in the wider context of ocean observations.

The further development of our understanding of the ocean is fundamental to address many of the global challenges that society faces today, such as climate change and food security. Although new and autonomous data collection platforms (fixed and mobile continuous measuring equipment and satellites) are increasingly used to investigate, monitor and evaluate the marine environment, research vessels (RVs) remain a key infrastructure that enable scientists to gather data and conduct the research required to expand our knowledge for the purpose of both fundamental understanding and policy support. Physical sampling of the seabed, water column and marine fauna, as well as multi-beam mapping of the seabed, are examples of activities for which RVs remain critical. Also deploying and recovering tools such as moorings, remotely operated vehicles (ROVs), autonomous underwater vehicles (AUVs) and gliders, often relies on RVs.

However, research vessels and their equipment are large and sophisticated, and inevitably costly, infrastructures. It is therefore critical that their importance and indispensable role is clear and that appropriate investments are made to ensure the ongoing provision of scientific support. On November 6th 2019, the European Marine Board (EMB, a strategic pan-European Forum of 33 Member Organizations, including key marine research performing institutes, funding agencies and university consortia) launched a new Position Paper that provides an overview of the current European research vessel fleet and its capabilities, and recommends ways in which it should evolve to meet future science needs. The Position Paper #25 is titled « Next generation European research vessels: Current status and foreseeable evolution » and is the result of a collaboration with the European Research Vessel Operators  (ERVO) group. ERVO is a European platform where RV operators discuss their national activities, projects, problems and plans for the maintenance, modifications and renewal of their research vessels.

Research vessels to address future science needs

The Position Paper describes the current fleet to be highly capable and leading on the world stage. However, with a typical life expectancy of a research vessel of 30 years, the fleet is ageing and urgently requires (re)investment to continue to be as efficient and capable as the scientific community and an effective policy require. Meantime also technology is developing fast and new research arises in specialized areas such as the deep-sea and Polar regions, and research vessels need to keep up the pace. Besides looking to the future needs, the Position Paper also goes beyond the fleet itself, and considers the training of fleet personnel, fleet management, and the role of research vessels in the wider context of ocean observations and the European Ocean Observing System (EOOS).

General recommendations

  • Information and data on the capabilities and equipment of the European research vessel fleet should be kept up to date and be periodically reviewed by the infrastructure owners with support from the European Research Vessel Operators (ERVO) group
  • For the European research vessel fleet to remain capable and fit-for-purpose, both the fleet and its scientific equipment and instruments should be renewed and developed as a matter of urgency
  • The research vessel community should continue on its path towards greater collaboration in order to aim for equal access to research vessel time based on excellent science and not (constrained by) the country of origin of the scientist, for more effective use of resources, for appropriate training for all parties, and for strategic planning of the research
  • Funding agencies should engage in discussions with the research vessel and marine science communities as well as other relevant stakeholders to identify key funding needs
  • The research vessel operator community should continue to look forward to the emerging science and technological developments (e.g. towards real-time data delivery, new autonomous systems, new science frontiers) and work together with relevant parties to ensure that the fleet is ready to support these

Belgian contribution

Belgium is represented in the EMB by the Fonds National de la Recherche Scientifique (FNRS), het Fonds voor Wetenschappelijk Onderzoek – Vlaanderen (FWO), en the Belgian Science Policy Office (BELSPO). BELSPO works closely with the Operational Directorate Natural Environment of the Royal Belgian Institute of Natural Sciences (RBINS) in support of selected EMB Position Papers and for communication aspects. Dr. Lieven Naudts, coordinator of the « Measurement Service Ostend & RV Belgica » group (part of RBINS-OD Nature), was one of the work package leaders in the EMB Expert Working Group on Next Generation European Research Vessels (WG Research Vessels) and is a contributing author of the resulting Position Paper. In June 2019, Dr. Naudts also was elected chairman of the European Research Vessel Operators (ERVO) group during their annual meeting in Hamburg, Germany. « Apart from exchanging experiences, the focus of ERVO in the following years will go to exploring collaboration opportunities to promote common interests and improve the service of RVs to the scientific community, policy makers, funding agencies and even private companies. Requesting the EMB to prepare a new Position Paper on RVs, was a logical thing to do », says Naudts. « With the construction of the new Belgian Ocean Class RV that is currently ongoing at Freire Shipyard (Vigo, Spain), in collaboration with Rolls-Royce Marine AS (now Kongsberg Maritime CM AS), Belgium is well on its way to be prepared for a bright RV future. The new RV Belgica will be technologically cutting edge and ensures the continuation of the Belgian contribution to the much-needed data collection in the marine environment, not only in the North Sea but also in the deep-sea and polar regions. » he adds.

Klas Lackschewitz (GEOMAR, Germany) hands over the chairmanship of ERVO to Dr. Lieven Naudts (RBINS-OD Nature, Belgium) at the University of Hamburg (June 2019).

50 years of protection of the North Sea

On Friday 11 October 2019, the North Sea countries celebrated the 50th anniversary of their Bonn Agreement cooperation in Bonn (Germany). Under this agreement, Belgium, the Netherlands, Germany, the United Kingdom, France, Denmark, Ireland, Sweden and Norway are fighting pollution of the North Sea together with the EU. This regional agreement was founded to combat the pollution of the North Sea by ships and other maritime activities. At the 2019 meeting, Belgium took the initiative to extend the scope of the agreement to include the prevention of illegal air pollution by shipping.

Evolution of the agreement

In 1967 the oil tanker ‘Torrey Canyon’ lost 117.000 tons of oil after being shipwrecked. Shortly after this first major oil spill, in 1969, the countries bordering the North Sea joined forces and concluded to the Bonn Agreement. In this way they help each other in the fight against pollution caused by disasters at sea, chronic pollution from ships and offshore installations. Moreover, they work together in exercising supervision and control.

Oil pollution in the North Sea has fallen sharply over the years, mainly due to the fact that nowadays, illegal oil discharges at sea are rare. This is the result of thirty years of coordinated efforts within the framework of the agreement to detect illegal discharges and to prosecute the polluters caught. However, it is still important to be able to act quickly and collectively in the event of an environmental disaster.

The Belgian delegation. From left to right: Eric Donnay (Head of Unit for Environmental Enforcement at Sea, FPS Public Health, Food Chain Safety and Environment) – Pierre Kerkhofs (Director-General DG Environment, FPS Public Health, Food Chain Safety and Environment) – Ronny Schallier (team leader SURV, MUMM, Royal Belgian Institute of Natural Sciences).

Results of the meeting

The Bonn meeting took a number of important decisions for the future of the agreement, which were adopted at a ministerial meeting. A new ambitious Strategic Action Plan of the Accord for the next six years was completed. Spain’s accession to the agreement – resulting in the extension of the agreement’s zone to the Bay of Biscay – was formally approved. Another important decision is the extension of the scope of the agreement to include emissions of polluting gases from ships. This was done at the suggestion of Belgium, which is in charge of the organisation of these new activities.

North Sea Minister Philippe De Backer: “This is an international recognition of Belgium’s expertise and pioneering role in protecting the seas and oceans. There is no doubt that this expertise will ensure even more effective controls on compliance with the standards for emissions of gaseous pollutants from ships in the North Sea”.

Implementation in Belgium

In Belgium, the Bonn Agreement is implemented by MUMM (Management Unit of the Mathematical Model of the North Sea) of the KBIN and the Marine Environment Service of the FPS Public Health. With the new action on the control of emissions from ships, the DG for Maritime Affairs of the FPS Mobility is now also actively involved. They jointly monitor marine pollution with aircraft and patrol vessels and control on board the vessels in the port.

Belgium is internationally regarded as a blue leader in the field of the protection of the seas and oceans. Our country was a pioneer in the field of marine spatial planning, the construction of offshore wind turbines and the fight against plastic waste in the sea. It has also taken international action to halve the CO2 emissions of ships by 2050, and Belgian shipowners are working hard to achieve zero-emission shipping. Moreover, one third of the Belgian part of the North Sea is protected as a Natura 2000 area and Minister De Backer recently confirmed to the United Nations the ambitious ’30×30′ plan to protect 30% of the ocean by 2030. The initiative to extend the scope of the Bonn Agreement in order to better protect the North Sea once again illustrates Belgium’s pioneering role.

More information: www.bonnagreement.org

Minke whale in Belgian waters on 10 November 2019

Big surprise on Sunday 10 November in one of the wind farms in the Belgian part of the North Sea: maintenance technicians observe a whale and can make a short video before the animal disappears under water. The images are delivered to RBINS: it turns out to be a minke whale. A rarity of which only five other cases from Belgian waters are known from the past 20 years. Only two of these earlier cases concerned live animals.

On Sunday 10 November, maintenance technicians were left stunned when they saw nothing less than a whale swimming past a wind turbine. The observation took place in the Norther concession zone, about 23 km from the port of Zeebrugge. Kenny De Groote succeeded in making a short video, which was sent to scientists of the Royal Belgian Institute of Natural Sciences for documentation.

« The images unmistakably show a rorqual, and the short fragment is fortunately of sufficient quality to identify the animal as a minke whale. » says Kelle Moreau, who was the first to receive the images and forward them to his colleagues. « Based on the overall impression of size and shape of the animal, and especially because of the extensive white zones at the base of the pectoral fins (flippers), I immediately thought of a minke whale » adds Jan Haelters, marine mammal expert from RBINS. « The shape and location of the dorsal fin, and the presence of a lighter zone behind the pectoral fins (the so-called « chevron »), also contribute to the identification that was confirmed by several consulted experts. »

Characteristics of the minke whale (© Whale Watching Handbook, International Whaling Commission)

Adult minke whales (Balaenoptera acutorostrata) reach a maximum size of 9 to 11 meters, with females becoming slightly larger than males. The minke whale is one of the smaller species of baleen whales, and is not considered a rare or endangered species.

A minke whale usually doesn’t show more than its back (© Mike Baird)

Although the minke whale is part of the fauna of the North Sea, its range is mainly limited to its northern and central part. The species is rarely found south of the Dogger Bank. However, research has shown that minke whales more often occur more to the south in recent years, probably as a result of changes in the ecosystem. From the Belgian waters, only the following cases are known to us from the last 20 years:

  • 2004: found dead at sea and landed; victim of by-catch
  • 2013: stranding; died by swallowing a large amount of plastic
  • 2013: observation at sea
  • 2017: decomposed carcass at sea
  • 2017: observation at sea

The skeleton of the minke whale from 2004 (owned by RBINS) can currently be admired in the permanent exhibition ‘Sea Change’ in the Provincial Visitor Centre Duinpanne in De Panne.

Skeleton of the Belgian minke whale from 2004, exhibition ‘Sea Change’, Duinpanne, De Panne (© RBINS/Kelle Moreau)

‘The Ocean We Need’ – Europe’s Leading Ocean Experts Launch Advice For Governments

The European Marine Board has recently launched a publication, titled ‘Navigating the Future V’, which will provide European governments with robust, independent scientific advice and expert opinion on future seas and ocean research to 2030 and beyond. To achieve this, leading ocean experts have identified the key areas of marine science where there are still gaps in knowledge.

 

The European Marine Board (EMB) is a leading European think tank in marine science policy. It is an independent non-governmental advisory network with a membership comprising more than 10,000 marine scientists from the major national marine/oceanographic institutes, research funding agencies and national networks of universities from countries across Europe. The Board provides a platform for its member organizations to develop common priorities, to advance marine research, and to bridge the gap between science and policy to meet future marine science challenges and opportunities.

Navigating the Future V

The knowledge gaps that Navigating the Future V (NFV) advises to prioritise in the research agenda is critical in understanding the four-dimensional ocean, to predict tsunamis and the impact of multiple stressors on biogeochemistry and biology, and to understand the impact of the future blue economy on our marine ecosystems. NFV shows that we need transdisciplinary science and sustainability science to address the management of a holistic four-dimensional ocean. It also highlights the technological advances and modelling needed for a possible future virtual ocean that would enhance public engagement and understanding of the ocean.

NFV proposes the science we need for the forthcoming United Nations Decade for Ocean Science for Sustainable Development (2021-2030), the next European Framework Programme, Horizon Europe, and its Mission on Healthy Oceans, Seas, Coastal and Inland Waters. The report was officially launched on 11 June 2019 in Paris, France, at the EurOCEAN 2019 Conference (High-level science-policy conference co-organised by European Marine Board, the European Commission and the Intergovernmental Oceanographic Commission of UNESCO).

Key Messages

Specifically, the report recommends a solutions-oriented marine research agenda, co-designed with all stakeholders, and with the governance of sustainability at its core. It should address the following key knowledge gaps:

  • The four-dimensional ocean (changes in the three-dimensional ocean over space and time) and functional links between the components of the marine system, i.e. physics, chemistry, biology, ecology and humans;
  • The impact of multiple stressors (e.g. climate change, pollution, overfishing) on the functioning of marine ecosystems, their interactions, evolution and adaptation over time, and the ecosystem services they provide;
  • The characteristics, probability and impacts of climate-related extreme events and geohazards (e.g. marine heat waves, meteotsunamis and submarine earthquakes, landslides, volcanic eruptions and their associated tsunamis) and how these might change under climate change; and
  • Ocean technologies, modelling, data and artificial intelligence needed for sustainable ocean observations to understand, predict and manage human impacts on the ocean.

Key actions include the development of a business model ensuring the long-term economic sustainability of ocean observations. We also need to develop a new generation of sustainability scientists and establish a sustainability forum within Europe bringing together all actors including industry and civil society.

The key messages and actions are also explained in a set of infographics (see below).

The report has been a collaborative effort starting in November 2017 with a planning meeting of 19 leading European experts in the field of marine science and related disciplines to decide on the high-level content. Larger collaborative working groups with representatives from 13 European countries then worked to identify knowledge gaps and draft the recommendations of the report.

The Belgian Federal Government is represented in the European Marine Board by the Belgian Science Policy Office (BELSPO). A scientific communicator from RBINS is delegated for communication aspects and membership of the European Marine Board Communications Panel (EMBCP).

Transport of organisms by ballast water: are Belgian and Dutch waters part of a Same Risk Area?

WaterBallast_FinalReport_20.12.2018

Ballast water is used to improve the draught, stability and strength of seagoing vessels when these are not (fully) loaded. The water is discharged elsewhere when new cargo comes on board. In this way, approximately 10 billion tonnes of ballast water are transported all over the world every year. Unfortunately, also a lot of marine organisms get transported in this way, some of which develop into invasive alien species in the new places where they end up. This makes treatment of ballast water necessary, but perhaps this does not make sense everywhere and ‘Same Risk Areas’ can be defined in which species are transported via natural currents anyhow?

In February 2004, the International Maritime Organisation (IMO) adopted by consensus the International Convention for the Control and Management of Ships’ Ballast Water and Sediments (BWM). The BWM requires all ships to implement a ballast water management plan, keep a ballast water record book and carry out ballast water management procedures according to a given standard. Parties of the convention are given the option to take additional measures based on criteria set out in the convention and IMO guidelines. The BWM entered into force on 8 September 2017. In 2024, all ships that sail in international waters should comply with the regulations and have a ballast water management system.

Same Risk Areas

In order to anticipate on this future situation, governments around the world have started analyses to determine the viability of so‐called Same Risk Areas (SRA). SRAs are exemption areas within the ballast water management convention in which it is not necessary to treat the ballast water, that can be loaded and unloaded anywhere within the SRA. Dutch and Belgian Ministries have taken the initiative to analyse the viability of an SRA in their waters. RBINS/ODNature and GIMARIS performed the research focusing on Zeebrugge, Antwerp, Vlissingen and Rotterdam. The role of the Eastern Scheldt as a hub for connectivity in the SRA is also investigated. The inclusion of London, Hull and Amsterdam in the SRA was briefly considered. An economic study in parallel with this ecological assessment was executed as well. Economic considerations were investigated in a parallel study.

The followed approach was two‐fold: available biological data on the occurrences of alien species within the region of the SRA were collected and analysed, and the connectivity between the ports was tested by verifying that all the water bodies of the ports connected to the seaside in the SRA are connected through natural water circulation, which would allow organisms to disperse by water currents. This was done by means of numerical mathematical models.

Summary of the results per port or zone

Zeebrugge‐Vlissingen

The biological sampling showed that all recorded alien species have probably been dispersed to all the suitable habitats in this region.  This is confirmed by the modelling study and the expert panel.

Rotterdam‐Scheldt zone  (Scheldt Estuary containing the Eastern Scheldt, Vlissingen and Antwerp)

Some hydroids (medusa stages) and dinoflagellates are found in Rotterdam, but not in the Scheldt zone. Differences in species occurrences between these two areas may be due to differences in salinities (lower salinities in some parts of the port of Rotterdam), and the timing of the surveys done. The modelling study shows connectivity but only when species are able to show specific behaviour. Species are able to travel faster from the Scheldt zone to Rotterdam than the other way around.

Antwerp‐Scheldt zone

Some alien species that are recorded in Antwerp are not recorded in the Scheldt zone and vice versa. Differences in species occurrences between these two areas may be due to different environmental conditions.  The model shows a strong, but unilateral connection from Antwerp to the Scheldt zone. Here the strength of the connection also depends on the species behaviour.

Antwerp‐Rotterdam

The oceanographic results show a weak connection between the two ports. The impact of behavior and season on dispersal is very important. The river system connecting Antwerp and Rotterdam is not taken into account, in this study. The fresh and brackish water species that could be connected through this system, are not included in this study.

A case study on the variable and invasive Ruditapes philippinarum showed that the model predictions should be further interpreted by means of biological information when available. (no copyright)

In conclusion, this study shows that the Scheldt zone (without Antwerp) can be considered a Same Risk Area. Whether this SRA can be extended to Rotterdam and Antwerp is less clear. Further investigation should clarify how an SRA between Belgium and the Netherlands can be finetuned.

 

Baetens K., Gittenberger A., Barbut L., Lacroix G. (2018). Assessment of the ecological implications when installing an SRA between Belgium and the Netherlands. Final project report. Royal Belgian Institute of Natural Sciences. Operational Directorate Natural Environment, Ecosystem Modelling. 71 pp. WaterBallast_FinalReport_20.12.2018

This research was financed by the Dutch Ministry of Infrastructure and Water Management under the contract 31136193 and by the Belgian Federal Public Service Mobility and Transport under the contract MA20180257 (including the participation of the Flemish government). We would like to thank Steven Degraer (RBINS), Francis Kerckhof (RBINS), Flemming Hansen (DTU Aqua, DK) and Johan van der Molen (NIOZ, NL) who reviewed this work and suggested useful comments.

New method allows processing of 4 decades of satellite data

Over the past four decades, different satellites have been circling Earth whilst collecting numerous data. However, technology evolved during this time, creating the need for a unified processing method. A newly developed algorithm and software now make it possible to consistently process all these data and obtain unified image series for parameters such as water reflectance and turbidity.

Since the launch of Landsat 5 in 1984 the earth’s landmass and coastal zones have been imaged every 16 days. Landsat 5 provided regular imagery for over 25 years and was disabled fully in 2013. Its mission is being continued by Landsat 7 (launched in 1999) and Landsat 8 (2013). The Landsat missions are complemented by two Sentinel-2 missions, launched in 2015 (S2A) and 2017 (S2B) which image the earth every 5 days. The data from the Landsat missions has been open access since 2008, and those of Sentinel-2 since their launch. Combining the data streams allows the study of long time series, but due to differences in sensor design and image formats of these satellites, it was difficult to align these data over time. More precisely, an atmospheric correction algorithm and processing software for the automated and consistent processing of these images was needed.

Unified processing

In a recent publication in the journal ‘Remote Sensing of Environment’, Quinten Vanhellemont of the Remote Sensing team (REMSEM) of our institute, describes a method for unified processing of these data in order to retrieve water reflectance and derived parameters, such as water turbidity. These products have been validated with a long time series of in situ measurements from around the globe (Figure 1). This method has been the default in the ACOLITE software since April 2018 that can process imagery from Sentinel-2A/B and Landsat 5/7/8. ACOLITE was also developed by Quinten at the Royal Belgian Institute of Natural Sciences.

Figure 1: Time series of water turbidity from in situ measurements (solid line) and derived from satellite imagery for a location in the southern North Sea. A good correspondence is found through the 20 year spanning time-series.

Images of long time series

The unified processing of data collected by the different satellites provides standardized, easily interpretable (and also beautiful) data series and images series. In the Belgian coastal zone, we can for example observe the impact of the extension of the ports of Zeebrugge and Oostende on the sedimentation on both sides of the port walls. The image series in Figure 2 show an accumulation of sand on the beaches to the east and west of the extended ports. Water turbidity is also retrieved and is in the Belgian coastal zone mainly dominated by resuspension of bottom material in superimposed cycles: an annual cycle of winter-high, summer-low turbidity and cycles of ebb-flood and neap-spring tidal resuspension.

Figure 2a: Extension of the port walls and inland docks of the port of Zeebrugge, and accumulation of sand on the beaches east and west of the port walls (1980s-2010s)
Figure 2b: Port of Oostende (1980s-2010s)

Vanhellemont, Quinten. “Adaptation of the dark spectrum fitting atmospheric correction for aquatic applications of the Landsat and Sentinel-2 archives.” Remote Sensing of Environment 225 (2019): 175-192. https://doi.org/10.1016/j.rse.2019.03.010

 

ACOLITE processor https://odnature.naturalsciences.be/remsem/software-and-data/acolite

ACOLITE forum https://odnature.naturalsciences.be/remsem/acolite-forum/

ACOLITE source code https://github.com/acolite/acolite

 

EUROFLEETS+ Ship-time and marine Equipment Application (SEA-Programme) Call “OCEANS”

Eurofleets+ is an Alliance of European marine research infrastructure to meet the evolving needs of the research and industrial communities.

General information

The Eurofleets+ project facilitates open access to an integrated and advanced research vessel fleet, designed to meet the evolving and challenging needs of the user community. European and international researchers from academia and industry are able to apply for several access programmes, through a single-entry system. Eurofleets+ prioritises support for research on sustainable, clean and healthy oceans, linking with existing ocean observation infrastructures, and supports innovation through working closely with industry.

Eurofleets+ accessible Research Vessels: The project enables access to a unique fleet of 27 state-of-the-art research vessels (13 Global/Ocean and 14 Regional) from European and international partners. Through competitive calls, Eurofleets+ provides a wide geographic coverage, with access to the Mediterranean and Black Seas, the Baltic Sea and the North Sea, the North Atlantic (incl. Greenland and Norwegian seas), and the Southern Pacific Ocean and Ross Sea.

Eurofleets+ accessible embarked equipment: Researchers have access to cutting edge equipment, which includes 7 ROVs (Remotely Operated Vehicles) and 5 AUVs (Autonomous Underwater Vehicles). A unique portable telepresence system enables remote access by researchers and diverse end users including the public; a first for Europe.

Eurofleets+ programmes

Three access programmes are foreseen to be launched in Eurofleets+:

1) Ship-time and Marine Equipment Application (SEA programme) for access to the vessels and marine equipment through a full ship-time application, for which there will be a minimum of two calls, one with “ocean“ and one with “regional“ vessels. The SEA call for Ocean vessels and equipment has opened on the 26th of June and remains open until 27th of September 2019. More details on this call can be found below. The SEA call for Regional vessels will be opened in fall 2019 and will also remain open for three months. Research vessels and marine equipment not offered or requested in the first call (Oceans), or with spare capacities will be offered in the second, Regional call.

2) Co-PI programme specifically aimed at early career researchers to implement their own research together with experienced scientists in Eurofleets+ scheduled cruises. The Co-PI programme is anticipated to be open to applications from November 2019 onwards, and remain open continuously to the beginning of 2022.

3) Remote Transnational Access (RTA programme) to provide researchers with remote access to samples or data from a Eurofleets+ fleet vessel. Remote access will allow smaller projects, sample or data needs, to be addressed, when this can be accomplished with one day of ship time. RTA programme applications will be submitted in a continuous running call that is also anticipated to be open to applications from November 2019 to the beginning of 2022.

Notes: Non European applicants are also elegible for funding. Industry partners, early career researchers and female researchers are encouraged to apply.

EurofleetsPlus funds cover use of the vessels, crew, fuel and other standard operating costs, as well as travel expenses for the embarked team and transport of equipment and samples.

SEA-Programme Call “OCEANS”

The SEA Programme offers fully funded transnational access to 14 Research Vessels (some with ice class) and 9 pieces of Marine Equipment to carry out ship-based research activities within any field of marine science.

Funding conditions, application guidelines and full eligibility criteria.

This call will remain open for the submission of proposals until Friday 27th of September 2019.

Research vessels:

North Atlantic Ocean

RV Arni Freidrickson (HAFRA, Iceland)

RV Celtic Explorer (MI, Ireland)

RV DANA (DTU, Denmark)

RV Magnus Heinason (HAVST, Faroe Islands)

RV Mar Portugal (IPMA, Portugal)

Arctic Ocean

RV Sanna (GRONLANDS, Greenland)

RV G.O. SARS (HAVFO, Norway)

Mediterranean Sea, Atlantic Ocean

RV Alliance (NATO-CMRE, Italy)

RV Pelagia (NIOZ, The Netherlands)

RV Ramon Margalef (IEO, Spain)

RV Thalassa (IFREMER, France)

North-West/West Atlantic

RV Coriolis II (UQAR, Canada)

RV Atlantic Explorer (BIOS, Bermuda)

Pacific Ocean

RV Tangaroa (NIWA, New Zealand)

Marine Equipment:

AUV Hugin (UGOT, Sweden)

AUV Hugin (FFI, Norway)

ROV Ægir 6000 (UiB, Norway)

HROV Ariane (Ifremer, France)

ROV Genesis (VLIZ, Belgium)

ROV Holland1 (MI, Ireland)

ROV LUSO (IPMA, Portugal)

ROV Marum Squid (UB, Germany)

ROV Ocean Modules V8 offshore (UGOT, Sweden)

VSAT Satellite System (Telepresence Unit) (GFOE, United States of America)

Detailed descriptions of the Research Vessels and Marine Equipment offered by EUROFLEETS+.

Contact: eurofleetsplus@awi.de

EuroGOOS, the European Global Ocean Observing System

EuroGOOS is the European component of the Global Ocean Observing System of the Intergovernmental Oceanographic Commission of UNESCO (IOC GOOS). The EuroGOOS Secretariat is located in Brussels, serving 44 members and supporting five regional systems in Europe. The Royal Belgian Institute of Natural Sciences (RBINS), and in particular its Marine Forecasting Centre, is one of these members and is involved in the North West Shelf Operational Oceanographic System (NOOS).

EuroGOOS identifies priorities, enhances cooperation and promotes the benefits of operational oceanography to ensure sustained observations are made in Europe’s seas underpinning a suite of fit-for-purpose products and services for marine and maritime end-users.

EuroGOOS working groups, networks of observing platforms (task teams), and regional systems (ROOS), provide for a for cooperation, unlock quality marine data and deliver common strategies, priorities and standards. The many EuroGOOS networks work towards integrated, sustainable and fit-for-purpose European ocean observing, underpinning the EOOS (European Ocean Observation System) framework.

EuroGOOS General Assembly – New Relevance, New Strategy

On 8 and 9 May the EuroGOOS General Assembly met in Heraklion, hosted by the Hellenic Centre for Marine Research and George Petihakis, EuroGOOS Chair. EuroGOOS strategy and integration were the main themes on the agenda. The meeting was attended by EuroGOOS members and the chairs of the EuroGOOS activities (working groups, infrastructure task teams, and the regional systems – ROOS).

The Assembly discussed the evolution of the organization and brainstormed on the next EuroGOOS strategy 2020-2030. The brainstorming was done through an interactive session in a World Café around four major areas of the strategy: high-level priorities, challenges, partnerships, and national benefits and advocacy. The results of this brainstorming will be transformed into the strategy and an accompanying roadmap, with the first draft prepared in the summer. The upcoming OceanObs’19 conference will further feed into the strategy preparation.

The Assembly also discussed ways to achieve a better integration between the variety of EuroGOOS activities. EuroGOOS task teams (networks of ocean observing technologies) and working groups (on science, technology, data integration and coastal ocean) are delivering best practices and state of play analysis, while the EuroGOOS Regional Operational Oceanographic Systems (ROOS) deliver regional coordination. At the end of 2019, EuroGOOS will host an integration workshop bringing all those activities together, to brainstorm and agree on steps to activate the new EuroGOOS strategy, and on the support needed from the EuroGOOS office.

Glenn Nolan (EuroGOOS General Secretary), George Petihakis (EuroGOOS chair) and Sebastien Legrand (Marine Forecasting Centre, Royal Belgian Institute of Natural Sciences) shake hands on the new office contract. © Dina Eparkhina/EuroGOOS

New members, new hosts

At the formal part of the meeting, the Assembly approved and warmly welcomed three new members to EuroGOOS: SHOM (France), PLOCAN (Spain) and NIVA (Norway). Representatives of these organizations showcased their activities and future contributions to EuroGOOS, spanning technological development, observing integration, ocean monitoring, and ocean literacy. The Assembly also elected a new member to the Executive Directors Board – Holger Brix of the Helmholtz-Zentrum Geesthacht in Germany. Two Executive Board members stepped down upon the completion of their full mandates – the Assembly thanked Urmas Lips (Tallinn University of Technology, Estonia) and Bernd Brugge (Federal Maritime and Hydrographic Agency, BSH, Germany)  for their contributions to the work of the Board over the past six years. At the Assembly, Chair George Petihakis also signed the EuroGOOS office hosting agreement with the Royal Belgian Institute of Natural Sciences (RBINS), represented by Patrick Roose and Sebastien Legrand. RBINS will host the EuroGOOS secretariat in its Brussels offices (also housing the Belgian Museum of Natural Sciences) from the end of 2019.

Text: Dina Eparkhina (EuroGOOS), Kelle Moreau (RBINS)

When originality makes you sail- a fourth grade class on the Belgica

The naming of Belgica II, the new Belgian research vessel that will succeed the Belgica at the end of 2020, was announced on 25 April 2019 and caused a great deal of ink to flow. However, if originality and cinematographic creativity had been the most important selection criteria, the new vessel would have been called “Gamma Ruspo”. This name was suggested by the students of class 4B of the Institut de la Providence de Champion, Namur. A reward was also announced for the most original video, so the students were expected on Monday 20 May in the military port of Zeebrugge, to sail on the Belgica for half a day. Captain Haddock’s shadow will be hanging over the North Sea…

On November 6th, 2018, the Belgian Federal Science Policy Office launched a contest in order to determine the name of the new Belgian oceanographic vessel. After a first phase in which schools could suggest names (accompanied with an explanatory video) and a second phase where everyone could choose one of the six selected names, the Minister for Science Policy announced the chosen name on 25 April 2019: “Belgica II”. The winning class, 1LA from Liège’s Athénée Maurice Destenay could enjoy a cruise on the Belgica the same day.

Nonetheless, a second laureate was chosen to reward the most convincing video, emphasising originality. For this prize, a jury determined that the class 4B of the Institut de la Providence de Champion (Namur) had realised the most original production. Their video was inspired by the comic heroes Tintin and professor Calculus, and states why they would have called the new vessel “Gamma Ruspo”. On 20 May 2019, this class also benefited from an excursion with the RV Belgica.

Scientists explain the measuring equipment on a tripod that will be placed on the seabed.

The Institut de la Providence, a green school interested in marine sciences

On the initiative of its direction, professors and students, l’Institut de la Providence is a school which has been engaging in multiple initiatives in terms of environmental protection for a long time: installing photovoltaic panels, replacement of all lighting with LEDs, managing beehives with a didactic hive in the classroom, signing of the “Green deal sustainable canteens” contract, soft mobility week from 20 to 25 May 2019, investment in recyclable cups and water fountains, environmental certification process, etc.

It is thus no surprise that the students of class 4B of the Institut de la Providence de Champion have heard of the naming contest in their French class. Before suggesting a name for the successor of the Belgica, everyone was invited to investigate and learn more about this venerable vessel. Consequently, the teenagers learned that it collects important information which contributes to thinking about sustainable fisheries, offshore wind turbines, mining activity in the deep sea, or offshore energy production and storage. The pooling of information made it possible to launch lines of thought to formulate original names for the successor of the Belgica.

It was a particularly busy day in the laboratories of the Belgica.

Gamma ruspo

After a flamboyant debate, 4B went for originality. What if we called this vessel “Gamma Ruspo?”.

Gamma rus what? The “Gammarus pulex” is a type of shrimp, “ruspo” means “I search” in latin, and there is no need to explain the link between the word “Gamma” and the world of science.

The name being chosen, it was time to go through the second part of the competition: film a one and a half minute video presenting the suggested name in an original way. A small group of students turned into a film crew and at the end of January, without anybody’s help, they shot a video in which  typically Belgian characters (Calculus and Tintin) are associated with the playful and scientific universe of “C’est pas sorcier” (French educational television programme). The result was quite successful on the internet and aroused reactions as far as Austria (the video has been translated in the three national languages).

Interpretation of Tintin – one of the protagonists of the winning film – by one of the students.

The outcome

In February 2019, the decision was made: “Gamma Ruspo” was not selected as one of the names from which the public could choose. The students were rather surprised to hear that the new Belgica was named… “Belgica 2”! They didn’t think this contest would result in this choice, although it is a strong mark that honours Belgian marine research’s history and tradition.

However, the Providence students were fair players, admitting that the name they suggested perhaps lacked readability. Although they were a little disappointed, they were still satisfied to have participated in the competition with a nice group work and a cool video.

April 2019, big surprise: a message from one of the contest organiser informed them that their video has won the award for being the most creative submission.

Dominique Rappe, the 4B’s French teacher, reacts: “It’s great that the class is rewarded, because many have gone really far in their thinking, proving their interest in biology, climate, and sciences in general. The film crew has been completely autonomous, and it is their intuitive talent that has been rewarded. Everyone is delighted that they were able to go on an excursion with the Belgica on Monday 20 May. We prepared the visit so that the youngsters could gather a maximum of information from the scientists that were carrying out research on that day. They also questioned the military staff that operates the vessel. The class even offered a little animation (song) in recognition of the adults that welcomed them in their professional environment.”

The students are amazed at how much can be told about a bottle of seawater.