Harbour porpoises in illegal recreational fishing nets, March 2021

On 8 March 2021 a harbour porpoise got stuck in an illegally placed gill net or entanglement net on the beach of Oostduinkerke (Koksijde). Harbour porpoises that get stuck in such nets drown at the rising tide. This animal (see first picture and subsequent video links) could be rescued just in time by an alert beach visitor. Another porpoise found on the beach in the same area on 4 March appeared to have died very recently and was probably killed in this way (photo at the bottom of the page).

Harbour porpoise in gill net at Oostduinkerke (Koksijde), 8 March 2021 ©Filip Van Bellinghen

Video 1 – harbour porpoise Koksijde 8 March 2021 © Filip Van Bellinghen

Video 2 – harbour porpoise Koksijde 8 March 2021 © Filip Van Bellinghen

The type of net in question was already banned in Belgium for recreational use at sea in 2001. In 2015, following a court procedure against our country by the European Commission, their recreational use on the beach was also banned. The Royal Belgian Institute of Natural Sciences takes infringements very seriously, and systematically reports violations to the competent authorities. They then take action against the people who placed the illegal nets on the beach.

Harbour porpoise found on beach of Oostduinkerke (Koksijde), 4 March 2021 ©Aäron Fabrice de Kisangani

EuroSea – Improving and Integrating European Ocean Observing and Forecasting Systems for Sustainable Use of the Oceans

 

 

Ocean observing and forecasting are critical to underpin any ocean-related activity, from science to blue economy, from management to ocean-human interactions. Despite the ocean’s paramount importance to society, there are fundamental gaps in today’s ocean observing and forecasting systems, limiting our capacity to sustainably manage our activities in the ocean. These gaps cannot be filled by individual nations.

Cooperation to Fill the Gap

The project EuroSea supports the European integration of coordinated observations and predictions of the ocean state and variability that can be sustained in the long term. Three innovation demonstrator work packages focus on operational services, ocean health and climate.

EuroSea Vision : Advancing Research and Innovation towards a user-focused, truly interdisciplinary and responsive European ocean observing and forecasting system, that delivers the essential information needed for human wellbeing and safety, sustainable development and blue economy in a changing world.

EuroSea is an EU Innovation Action titled “Improving and Integrating European Ocean Observing and Forecasting Systems for Sustainable Use of the Oceans” and is part of “The Future of Seas and Oceans Flagship Initiative” funded through the Horizon 2020 Blue Growth call (BG-07-2019-2020). The project brings together key European actors of ocean observation and forecasting with key end users of ocean observations. An interdisciplinary consortium of 55 partners is working together for 50 months and is allocated a budget of almost € 12.6M. The project is coordinated by GEOMAR Helmholtz Centre for Ocean Research Kiel, Germany. The kick-off (1st EuroSea Annual Meeting) took place at the Royal Belgian Institute of Natural Sciences (RBINS) in Brussels on 27-29 November 2019, organized by GEOMAR, RBINS and EuroGOOS. RBINS is active in the work package ‘Communication: Engagement, Dissemination, Exploitation and Legacy’ that has, among others, produced the EuroSea Communication Plan (coordinated by EuroGOOS, RBINS and GEOMAR) and the EuroSea Video presented above (coordinated by SOCIB – Balearic Islands Coastal Observing and Forecasting System).

The EuroSea consortium at the kick-off meeting at the Museum of Natural Sciences (KBIN) in Brussels, 27 November 2019 ©Michael Chia

2nd EuroSea Annual Meeting and General Assembly

The (virtual) second EuroSea week ran from 18 to 22 January 2021 bringing together over a hundred experts participating in the project as well as invited speakers from related global and European initiatives.

The European Commission DG Research Innovation shared their aspirations and stressed the important role of EuroSea in helping to improve ocean knowledge and sustainability. The newly established G7 European Office, hosted by Mercator Ocean International in Toulouse, France, shared their plans in relation to the G7 Future of the Oceans and Seas Initiative. Presentations were given from international and European ocean observing coordination programmes and initiatives including the Global Ocean Observing System (GOOS) – programme under the UNESCO-IOC, the Integrated Marine Observing System (IMOS) – the GOOS Regional Alliance in Australia, and the European Ocean Observing System framework led by EuroGOOS and the European Marine Board.

The EuroSea work packages presented the progress made during the first 14 months of the project, aiming at better coordinating European ocean observing and forecasting. Special emphasis was made during the week on the EuroSea impact assessment. The protocol put forward by leaders of work packages 1 (governance) and 8 (engagement, dissemination, exploitation & legacy) consists of determining key EuroSea impact areas and developing a pathway to analyze impacts within each of them, which are possible to measure or to illustrate. EuroSea impacts span coordination, decision support, science, and operational services, with many innovations planned along the way. The best practices collected during the project will be transferred to the global oceanographic community through the IOC Ocean Best Practices System.

Diversity and inclusion were another special emphasis of the week, with the EuroSea Gender and Diversity Board presenting the first results of both an institutional and a personal survey of the EuroSea partners. At a subsequent thought-mapping session, participants shared the way forward for EuroSea on topics of gender, diversity, career, and culture as linked with the scientific and innovation work of the project and its community.

Four scientific lunches were hosted during the week with seven presentations highlighting a range of EuroSea tasks, from data collection to data products and services or network coordination mechanisms.

10 European projects relevant to the goals of EuroSea were invited to highlight their efforts in flash talks. Collaboration between EuroSea and some of these projects has already been initiated through the European Commission’s Horizon Results Booster service.

The General Assembly concluded the week with the Executive Board elections, plans for the project’s Exploitation Strategy, and a discussion on the recommendations from the EuroSea International Scientific and Technical Advisory Board.

Belgium in the frontline against air pollution from ships in the North Sea

MARPOL Annex VI Experts Workshop, February 2021

An expert Workshop aiming to develop a common strategy and operational procedures on the monitoring of air emissions by ships in the Greater North Sea area was held on 2 – 5 February 2021. The Workshop was chaired by Ronny Schallier of the Royal Belgian Institute of Natural Sciences (RBINS) and concluded on a set of recommendations that will be further explored. A promising start!

The Coast Guard aircraft of the Royal Belgian Institute of Natural Sciences (MUMM) ©RBINS/MUMM

Pollution from Shipping Must be Tackled Internationally

The International Convention for the Prevention of Pollution From Ships (MARPOL) is a treaty of the International Maritime Organisation (IMO) and constitutes the main mechanism for the prevention of pollution of the marine environment by ships from operational or accidental causes. Six annexes lay down rules for the prevention of various types of pollution. Annexes I to V deal with various substances that can be released directly into the water by ships (oil, other noxious liquid substances, harmful substances in packaged form, sewage and garbage), while Annex VI deals with air pollution from ships.

On a regional scale, ten countries that surround the North Sea and its Wider Approaches, together with the European Union, cooperate in dealing with pollution of the North Sea by ships in the framework of the Bonn Agreement. Prevention, preparedness and response are on the agenda. The scope of work of this Agreement was recently extended by including MARPOL Annex VI surveillance, which implies the development of a region-wide monitoring strategy.

The Way to Harmonized and Coordinated Monitoring

On 2-5 February 2021, more than 60 experts from the Bonn Agreement Contracting Parties joined the   Workshop together with the Chair of the North Sea Network of Investigators and Prosecutors and representatives from other regional agreements. The plenary session was chaired by Ronny Schallier of the Belgian Scientific Service MUMM (Management Unit of the Mathematical Model of the North Sea, part of RBINS; experts Ward Van Roy and Kobe Scheldeman of the MUMM surveillance team co-convened the meeting) and four parallel breakout groups were organised to discuss the legal, operational and scientific issues relating to the monitoring and enforcement of MARPOL Annex VI. On behalf of Belgium also DG Shipping (FPS Mobility and Transport) made a valuable contribution, explaining the legal context and the role of port inspections.

The use of the different platforms and sensors to monitor sulphur oxides (SOx) and nitrogen oxides (NOx) in the emissions from vessels was considered along with regional monitoring programs and using assets of the European Maritime Safety Agency (EMSA) to boost regional cooperation. The Workshop concluded on a set of recommendations to be further explored through a Strategic and Operational Working Group and a Technical Working Group under the umbrella of the main Technical Working Group of the Agreement, OTSOPA.

“Sulphur oxides and nitrogen oxides in the emissions of ships not only have a significant environmental impact but are also important triggers of fine particulate matter and pose a serious public health problem. This Workshop can be considered a successful start of a coordinated, effective compliance monitoring of the strict international standards for ship emissions in the North Sea” Ronny Schallier explains. “In the fight against air pollution from ships, the 10 countries of the Bonn Agreement and the EU will jointly deploy various platforms (aircrafts, drones, fixed measuring stations) and innovative sensors throughout the wider North Sea area, from the Gulf of Biscay to the Scottish and Norwegian waters. In this joint effort, the Coast Guard aircraft of the Royal Belgian Institute of Natural Sciences (MUMM) will continue to play an important pioneering role.”

Ghent becomes godfather city of the new research vessel Belgica

PRESS RELEASE Cabinet Science Policy & City of Ghent, 31 January 2021

The city of Ghent will be the godfather city of the new Belgian research vessel Belgica. The ship will be baptised in Ghent in September 2021. This was announced on 31 January 2021 by the State Secretary for Science Policy, Thomas Dermine, and the Mayor of Ghent, Mathias De Clercq.

The new research vessel Belgica. ©Freire Shipyard

The city of Ghent will be the godfather of the new research vessel. The State Secretary for Science Policy, Thomas Dermine, took this decision after consultation with the Mayor of Ghent Mathias De Clercq. The city of Ghent had already expressed its interest in becoming the godfather of the advanced research vessel. A candidacy supported by the University of Ghent, an important scientific partner of the Belgica.

“At the moment, the finishing touches are being put to the vessel in Vigo, Spain, which is also undergoing extensive testing. In September 2021, Belgium’s pride in marine research and technology will be christened in Ghent,” jubilates State Secretary for Science Policy Thomas Dermine. “With the Belgica, we are helping our country to become one of the world leaders in marine and underwater exploration. I am very happy with Ghent’s enthusiasm to become the godfather city of this exceptional ship”, continues Thomas Dermine.

“We are particularly honoured and proud to be the godfather city of the new research vessel Belgica”, says Mayor Mathias De Clercq enthusiastically. “Ghent will use this title to stimulate young people’s and schools’ interest in science and to make the most of Ghent’s assets as a knowledge and port city. The ship is powered by Ghent engines and the people of Ghent will proudly welcome the Belgica”, Mathias De Clercq continues.

The new Belgica, a 71-metre oceanographic research vessel, will play a key role in Belgian and European marine research in the coming decades.

Starting in autumn 2021, the ship will embark on expeditions to research numerous issues, such as the fight against global warming and better protection of the environment.

As a multidisciplinary research vessel, the Belgica will support scientific research in the fields of fisheries, biology, geology, climate and chemistry.

The Belgian State, represented by the Federal Science Policy Office (BELSPO), is the owner of the ship. The Royal Belgian Institute of Natural Sciences (RBINS) will manage the vessel in cooperation with the Ministry of Defence and a private operator.

The new research vessel will succeed the current research vessel Belgica (launched in 1984), which in the past 36 years has travelled almost one million kilometres and facilitated more than 1,000 scientific expeditions.

Like its predecessor, the Belgica will operate within the European EUROFLEETS network, which gives European researchers access to a common marine research infrastructure.

The new ship will be baptised in September in Ghent after an inauguration trip between Zeebrugge and Ghent in the presence of Princess Elisabeth. As a reminder, the Duchess of Brabant is the godmother of the new Belgica.

Activities for the general public will be organised in the margins of this official inauguration.

The new research vessel Belgica. ©Freire Shipyard
State Secretary for Science Policy Thomas Dermine and Mayor Mathias De Clercq seal Ghent’s godfathership.

Public consultation: Applications for an environmental permit for sand- and gravel extraction

Agentschap voor Maritieme Dienstverlening en Kust, afdeling Kust, van C.B.R. Cementbedrijven nv – Afdeling SAGREX en De Hoop Bouwgrondstoffen bv c.o. SATIC nv have applied for the prolongation and/or extension of their concession for sand and gravel extraction in the Belgian part of the North Sea. These applications are subject to an environmental impact assessment procedure.

Sand and gravel from the North Sea is sorted by grain size. © RBINS/K. Moreau

The applications and the environmental impact assessment report, including a design of appropriate assessment, can be downloaded below (in Dutch). Objections received shall be added after the public consultation.

Applications

Afdeling Kust_begeleidend schrijven_20201207_br_FOD Economie_aanvraag concessie

Afdeling Kust_formulier-aanvraag-concessie

CBR Sagrex – aanvraagformulier

De Hoop – aanvraagformulier

Dieptekaart-concessieaanvraag 2021-2031_definitief plan

Environmental impact assessment report

2020-BE0119000341_MER Zandwinning_v7.0_Finaal_20201112_incl Bijlagen

NTS EN_BE0119000341_MER Zandwinning_20201112

NTS NL_BE0119000341_MER Zandwinning_20201112

Results of the consultation (all in Dutch)

20210311_zandwinning_bezwaarschrift_4Sea

20210304_zandwinning_bezwaarschrift_SandradeGier

20210304_zandwinning_bezwaarschrift_KarinGielen

The public consultation runs from January, 29th until February, 27th 2021.

Any interested party can submit its views, comments and objections to Ms. Brigitte Lauwaert by letter or email until March, 14th 2021.

MUMM Attn. Ms. Brigitte Lauwaert
Vautierstraat 29
1000 Brussels
blauwaert@naturalsciences.be

Environmental impact of offshore wind farms – Results of the world’s biggest operational wind zone

While Belgium emerged as a world leader in the offshore wind industry, the Belgian scientists that monitor the environmental impact of offshore wind farms have also developed extensive knowledge and expertise. Shortly after the first Belgian offshore wind zone was completed (the world’s biggest to be operational), the monitoring consortium presents its latest conclusions and recommendations in a new report. Different components of the marine ecosystem are impacted in different ways. Therefore, the environmental impact is not a black or white story. Balancing the energy and biodiversity crises was never expected to be an easy task. The monitoring continues, as does the development of mitigation measures where needed.

The European Commission imposes targets for the contribution of renewable energy sources to the total electricity production by all Member States (Directive 2009/28/EC). For Belgium, 13 % of the total energy consumption must be covered by renewable energy by 2020. Offshore wind farms in the Belgian part of the North Sea make an important contribution, and a first zone of 238 km² along the border with the Netherlands was reserved for wind farms to achieve this goal. At the end of 2020, after 12 years of construction, the wind farms in this zone were completed. A total of 399 turbines is now operational in eight wind farms, with an installed capacity of 2,26 Gigawatts (GW) and the production of an average of 8 TWh. This represents approximately 10 % of Belgium’s total electricity demand, or 50 % of the electricity needs of all Belgian households. At the moment, the construction works have ended, but a second area for renewable energy of 285 km² is foreseen in the new Marine Spatial Plan for the period 2020-2026, intending to add a minimum of 2 GW to the total Belgian offshore wind energy production capacity.

Zones for offshore wind farms in the Belgian part of the North Sea. Eastern shaded area = first phase, western shaded areas = second phase, dotted lines demarcate areas for cables and pipelines (from Marien Ruimtelijk Plan 2020-2026, Bijlage 4: Kaarten)

Balancing the energy and biodiversity crises

It is very challenging to find a balance between the installation of offshore wind farms as measures to combat the energy/climate crisis and acceptable environmental impacts in the light of combatting the biodiversity crisis. Both crises need to be tackled, but within conditions that do not worsen the other crisis. It also needs to be kept in mind that the Belgian offshore wind farms are not unique cases: on the scale of the southern North Sea, offshore wind farm areas are also foreseen in the adjacent Dutch Borssele zone (344 km²) and in the French Dunkerque zone (122 km²). Cumulative ecological impacts will hence continue to be a major concern in the years to come. Only by closely cooperating towards the common goal of increasing the production of renewable energy with acceptable ecological impacts, science, industry and policy can jointly address the challenge.

Permits and Monitoring

Before a wind farm can be installed in Belgian marine waters, developers must obtain a domain concession and an environmental permit. This permit imposes a scientific monitoring programme to assess the effects of the project on the marine ecosystem and includes terms and conditions that are intended to minimise and/or mitigate aspects of the impact that are evaluated to be unacceptable. The monitoring programme is carried out by the WinMon.BE consortium. Annual reports that target marine scientists, managers, policy makers and offshore wind farm developers are published in the ‘Memoirs of the Marine Environment’-series of the Royal Belgian Institute of Natural Sciences.

The monitoring programme covers a broad range of ecosystem components from soft sediment and (artificial) hard substrate invertebrates and fish to seabirds and marine mammals, as well as their interactions. In other words, the monitoring does not only focus on the quantification of the extent of the impacts on the marine ecosys­tem but also aims at revealing the cause-effect relationships of certain impacts.

Research Vessel Belgica documenting fish fauna in a Belgian offshore wind farm (© ILVO/A. De Backer).

Long-term Insights

The newest report ‘Environmental Impacts of Offshore Wind Farms in the Belgian Part of the North Sea. Empirical Evidence Inspiring Priority Monitoring, Research and Management’, presents an overview of the scientific findings of the Belgian offshore wind farm environmental monitoring programme (WinMon.BE), based on data collected up to and including 2019.

Because the different studied ecosystem components are impacted by offshore renewable energy developments in different ways, and at different spatial and temporal scales, the environmental impact cannot be easily summarised as positive or negative. The main conclusions and recommendations of the latest studies include:

  • The use of double bubble curtains proved partially effective to reduce underwater sound associated with the installation of 8 m diameter monopiles to levels in line with national standards.
  • Following a review of compliance with relevant environmental license conditions, an optimization of the use of acoustic deterrent devices and noise mitigation measures, and formalizing marine mammal surveys, are recommended.
  • Over 80% of the estimated number of seabirds colliding with turbines in Belgian waters are large gulls. Wind farm location, layout and turbine size determine the expected number of collisions.
  • Future research should address specific aspects of the impact on individual birds and populations, and mitigation: correlation between displacement and wind farm characteristics, large gull movements and an empirically informed species-distribution model to support marine spatial planning.
  • Sediments become finer and organically enriched close to jacket foundations, accompanied by higher abundance and diversity of macrofauna. Typical coastal species from productive waters are colonizing the now finer sediments around the turbines.
  • Nine years after construction, the first signs become apparent that wind farms can act as refugia for fish that prefer soft sediments (e.g. plaice), probably resulting from fisheries exclusion and increased food availability, while the reef effect expands to soft sediments between the turbines (colonized by invertebrates of hard substrates).
  • Offshore wind farms influence the local food webs from the basis, with colonizing fauna reducing primary producers, to higher trophic levels, with several fish species intensively feeding on the colonizing fauna.
Aerial view on Belgian offshore wind farm (© RBINS/MUMM)

Future Monitoring

The fact that the first Belgian zone for offshore wind farms has been fully completed does not mean that the monitoring now comes at an end. Although the understanding of the effects of wind turbines on the marine environment and its inhabitants has grown significantly over the past 10 years, there is still much to learn about the longer-term environmental impact of offshore wind farms. To allow for that, the current cooperation model in which scientists and the offshore wind industry document the impact of the operational phase of the wind farms will continue to remain active. “Examples of fields that we have started to explore but cannot yet report on include the improvement of modelling of bird and bat collision risks, the monitoring of the impact of continuous underwater sound that is generated by operational turbines, and the longer-term effects on fish populations. It also remains unknown how fouling communities on the wind turbines will further evolve, and how the observed behavioral changes impact the individual fitness, reproductive success and survival of marine animals.” says Steven Degraer, coordinator of the WinMon consortium and head of the Marine Ecology and Management team of the Royal Belgian Institute of Natural Sciences. Degraer continues “Extending the cooperation will also allow to further evolve in the field of designing, testing and improving mitigation measures to directly manage unwanted effects on the marine ecosystem.”

Monitoring activities will also have to be initiated in the same way in the second Belgian offshore wind zone once the construction will start there. The collection of baseline data on the state of the marine ecosystem in that area, on which a future assessment of changes will rely, is already ongoing. In addition, rapidly evolving technology and construction practices require frequent reassessment of observed impacts.

In the meantime, the Belgian expertise on the monitoring of the environmental impact of offshore wind farms is also getting international attention. “Monitoring plans that are inspired by the Belgian work are being set up in both France and the United States, so Belgium should not only be considered a world leader in the offshore wind industry, but also in the monitoring of their environmental impact.” Degraer concludes.

The Monitoring Programme WinMon.BE is a cooperation between the Royal Belgian Institute of Natural Sciences (RBINS), the Research Institute Nature and Forest (INBO), the Research Institute for Agriculture, Fisheries and Food (ILVO) and the Marine Biology Research Group of Ghent University, and is coordinated by the Marine Ecology and Management team (MARECO) of the Royal Belgian Institute of Natural Sciences.

Minister of North Sea helps monitor nitrogen emissions from ships at sea

On Wednesday 13 January 2021, Deputy Prime Minister and Minister of North Sea Vincent Van Quickenborne checked to what extent ships in the Belgian part of the North Sea comply with the applicable air pollution standards. To this end, he flew along in the Belgian Coast Guard plane. Through the application of a ‘sniffer’ sensor in this aircraft, our country is known as a pioneer in the international fight against air pollution above the sea. The sensor allows polluting components in ship emissions to be measured in the field. Sulphur measurements have been on the programme since 2016, and since 2020 nitrogen compounds can also be detected. With this, Belgium was the first to be ready to monitor above the sea the restrictions on nitrogen emissions from ships that will apply in the North Sea from 1 January 2021.

Pilots Dries Noppe and Pieter Janssens, minister of the North Sea Vincent Van Quickenborne and operator Ward Van Roy (from left to right) after the successful sniffer mission with the Coastguard aircraft OO-MMM. © RBINS/MUMM

Emissions of sulphur dioxides (SO2) and nitrogen oxides (NOx) from ships contribute significantly to various health and environmental problems, such as the formation of fine dust, the eutrophication (enrichment by excessive fertilisation) of the living environment (on land and at sea) and the acidification of busy coastal regions. They also give rise to the formation of the greenhouse gas ozone, which not only contributes to climate warming but can also cause significant respiratory problems. Enough reasons to take the fight against the emission of these substances seriously!

Federal attention to the fight against air pollution

The Belgian Coast Guard has already been using a so-called ‘sniffer’ sensor on board MUMM’s aircraft (Britten-Norman Islander, registration number OO-MMM) that is deployed over the sea to check for environmental and nautical violations since 2016. This sensor is an important tool in the fight against air pollution. Belgium was already in the international spotlight with regard to the enforcement of sulphur legislation, and in 2020 expanded its unique expertise to include the measurement of nitrogen compounds in emissions from ships at sea.

“For the purchase of the nitrogen sensor, my predecessor Philippe De Backer made a budget of € 70,000 available in 2019 to the Scientific Service Management Unit of the Mathematical Model of the North Sea (MUMM) of the Royal Belgian Institute of Natural Sciences (RBINS), which both owns and manages the Coast Guard aircraft. Also in my policy, we make the fight against air pollution above the sea a priority and we follow up this dossier closely”, says Minister Van Quickenborne.

Minister of the North Sea Vincent Van Quickenborne and operator Ward Van Roy during the sniffer mission above the North Sea. © RBINS/MUMM

When ships with suspicious sulphur or nitrogen levels in their emissions are detected, a report is drawn up and submitted to the port inspection services of the FPS Mobility. They then go on board and subject the ship to an extensive inspection. If irregularities are found, an administrative fine is imposed. By identifying suspect ships on the basis of air monitoring, port inspections and sampling can be carried out in a more targeted way, making them more efficient.

Nitrogen emission control area

On 1 January 2021, an Emission Control Area for nitrogen oxides (NOx) came into force in the North Sea and Baltic Sea. This so-called Nitrogen Emission Control Area (NECA) is part of the International Convention for the Prevention of Pollution from Ships (MARPOL), a convention of the International Maritime Organisation (IMO). Regulation 13 of MARPOL Annex VI defines the NOx emission limits for marine diesel engines as the amount of NOx per unit of engine power (expressed in g NOx per kWh).

The maximum NOx emissions allowed from ships of the three Tier categories in the NECA areas, as a function of engine power.

Three emission levels are defined based on the date of construction (keel laying) of the ship, the so-called Tiers. Ships built between 2000 and 2011 have to comply with the Tier I standard (maximum 17g NOx/kWh), ships built after 2011 will have to comply with the Tier II standard (maximum 14.4g NOx/kWh). Ships built from 2021 onwards will have to comply with the strictest NOx standards of Tier III (maximum 3.4g NOx/kWh) in the NECA area. Ships built between 1990 and 2000 with a large engine capacity (>5000kW) or a cylinder size larger than 90l are also subject to the Tier I standard. No standard has been set for older ships. The aim is to achieve a gradual reduction of up to 80% in NOx emissions from ships sailing in these and other NECA areas by 2040.

For sulphur, too, there are control areas with strict standards, and Belgian marine waters have been part of the North Sea and Baltic Sea SECA zone (Sulphur Emission Control Area) since 2015. Since the NECA and SECA areas for the North Sea and Baltic Sea correspond geographically, from 2021 onwards we will simply refer to the North Sea and Baltic Sea ECA area (see map).

The North Sea and Baltic Sea Emission Control Area.

The NOx sensor

When a restrictive legal framework is not accompanied by adequate control mechanisms, the rules obviously risk remaining a dead letter. Until recently, the NOx regulations could only be enforced by checking the possession of a valid international air pollution prevention certificate, which had to be regarded as prima facie evidence of compliance. Also, the extent to which ships using emission reduction techniques (e.g. a catalytic converter) had activated their equipment in time before entering the ECA, and thus whether they were actually complying with the nitrogen regulations, could recently not be determined with certainty.

The new technology of the nitrogen sensor changes this situation. For the first time, accurate NOx monitoring can be carried out over the sea, and non-compliant ships can be identified with real measurements as proof.

The Coastguard aircraft with immatriculation OO-MMM. © RBINS/MUMM

Test results and future perspectives

The NOx sensor was extensively tested during the second half of 2020. “During 25 flights, we were able to successfully determine the nitrogen emissions of no fewer than 394 ships in Belgian waters!” clarifies Ward Van Roy, one of the operators of the Coast Guard aircraft. Of the ships monitored, about half were built between 2000 and 2011, and a third were more recent than 2011. The remaining ships dated from before 2000. “We found that the vast majority of ships monitored that must meet Tier I and Tier II standards from 2021 were already in compliance, but also documented some ships with nitrogen concentrations in their emissions that were more than double the limit. We are curious to see whether this will continue to be the case after the NECA is activated on 1 January 2021.” Van Roy adds.

Minister Van Quickenborne concludes: “Belgium was ready to carry out its enforcement role in nitrogen emissions from 1 January 2021. The first results can be considered a great success and give us confidence that we will be able to collect an enormous amount of information on nitrogen emissions from ships at sea. In the meantime, I have also released funds for the purchase of a sensor that can measure ‘black carbon’ emissions. This will be added to the aircraft’s equipment later in 2021 and will provide results that will help develop the necessary regulations within the IMO. We aim for 55% reduction by 2030 and climate neutrality by 2050. In this way, we are further expanding Belgium’s pioneering role in the fight against air pollution from ship emissions at sea.”

Report of the first Belgian Flat Oyster Day

On Tuesday 24 November 2020, the Royal Belgian Institute of Natural Sciences (RBINS), Ghent University and the Research Institute for Agriculture, Fisheries and Food (ILVO) jointly organised the first Belgian Flat Oyster Day, as an online event.

A lot of information on several aspects of flat oyster restoration and aquaculture was presented during the event. The event demonstrated that an interest in flat oyster is emerging in Belgium, which was also illustrated by large audience (60+) that attended the event.

A report of the event has been compiled, containing the biographies of the speakers and the abstract of the presentations. Also the Q&A and poll results are included. Consult the report : Report_Belgian_Flat_Oyster_Day2020_Final.

 

 

The presentations are also available under the following links (the links are also provided in the report).

Restoration of flat oyster reefs in Europe – Bernadette Pogoda (AWINORA)

Flat oyster aquaculture in Europe. An overview – Bérenger Colsoul (AWI)

Legal (environmental) requirements for flat oyster introduction in Belgium – Jan Haelters (RBINS)

Animal health requirements for flat oysters’ movements – Chantal Rettigner (FASFC)

Restoration of flat oyster reefs. Vision on nature restoration – Yana Deschutter (FPS Environment)

Past projects – Value@Sea (EMFF) – Daan Delbare (ILVO)

Ongoing projects – SYMAPA (Blue Cluster) – Bert Groenendaal (Brevisco)

Ongoing projects – UNITED (H2020) – Nancy Nevejan (Ghent University)

Ongoing projects – BlueMarine³.Com (Blue Cluster) – Mathieu Wille (Ghent University)

Potential of flat oyster aquaculture – Patrick Sorgeloos (Vlaams Aquacultuurplatform)

European Flat Oyster in the North Sea, The Dutch Approach – Wouter Lengkeek (Bureau Waardenburg)

 

The interaction with the audience through the polls showed that there is a keen interest in the continuation of the Belgian Flat Oyster Day. In what format this will be, e.g. as a yearly event or as the creation of a Belgian Flat Oyster Consortium, in line with the Dutch initiative, is under consideration. To be continued.

We sincerely want to thank all speakers for their excellent presentations, and the audience for their attendance and enthusiastic participation in this online event!

 

Minke whale washed ashore on the beach of Bredene

A young minke whale that was washed ashore on Bredene beach on 11 December turned out to have a very unfortunate history: an empty stomach, intestines full of parasites and an abnormal spine. To make matters worse, two broken mandibles added to the problems. It is only the eighth minke whale that has been documented in Belgium during the past 20 years, and only the third stranding.

In the morning of Thursday 11 December 2020, the fresh carcass of a young minke whale (Balaenoptera acutorostrata) washed ashore on the beach of Bredene, near the border with Ostend. The animal, 3.89 m long (an adult minke whale can grow up to almost 10 m long) and weighing 489 kg, looked very skinny, and had a broken right lower jaw of which the bones protruded through the wound. A healthy specimen of the length of the Bredene minke whale should weigh about twice as much, so it was immediately suspected that it was in poor health even without fractures.

© RBINS/MUMM_J. Haelters

Autopsy reveals cause(s) of death

The carcass was immediately transferred to the Faculty of Veterinary Medicine at UGent, where a team from UGent and the ULiège performed an autopsy on 12 December. This post-mortem examination confirmed the poor condition of the unfortunate minke whale: no remains of a recent meal were found in the stomach, the digestive system was full of parasites and the spine showed abnormalities. The open fracture in the lower right jaw turned out to be less old than first suspected, and the lower left jaw also turned out to be broken. Eventually, the emaciation was not related to the fractures: the animal must have contracted them only very recently, and they were the result of a collision with an obstacle such as a vessel or a breakwater, or with the seabed.

© RBINS/MUMM_J. Haelters

Minke whales in Belgium

Although the minke whale is part of the North Sea fauna, its range is mainly limited to the northern and central parts of the North Sea. In recent years, however, they were more commonly observed in the south, probably due to changes in the marine ecosystem. “In Belgian waters, only seven proven cases are known to us from the last 20 years, three of which concerned carcasses while the other four referred to observations of live specimens.” explains Jan Haelters, expert on marine mammals at the RBINS. “The carcasses date from 2004 (found dead at sea and landed; died by bycatch), 2013 (stranded; died by swallowing a large amount of plastic) and 2017 (carcass in a far state of decomposition at sea). The live minke whales were observed in 2013, 2017, 2019 and 2020.” It is not known with certainty whether a number of reports from October 2020 actually concerned minke whales.

© RBINS/MUMM_J. Haelters

The skeleton of the Bredene minke whale will be preserved for science.

Wind farms as suppliers of energy and mussels

The cultivation of mussels in Belgian offshore wind farms is both biologically and technically feasible, according to research carried out by our scientists and their partners within the Edulis project. The economic feasibility depends on solving technical challenges.

After two years of experimentation and research, scientists and private companies present the results of the research project ‘Edulis: offshore mussel culture in wind farms‘, which looked at the possibilities for mussel farming in offshore wind farms 30 to 50 km off the Belgian coast. Edulis is a collaboration between Ghent University, the Research Institute for Agriculture, Fisheries and Food (ILVO), RBINS/OD Nature and 5 private partners (Belwind, Brevisco, C-Power, Colruyt Group and DEME Group). The ambitious pilot project is largely financed by private funding and facilitated by Flemish and European funding.

Quality Mussels

The project has demonstrated that it is both biologically and technically possible to cultivate mussels in the Belgian offshore wind farms, which means that these can serve more than one purpose at a time. The experiments resulted in a tasty quality mussel that is well stocked and meets all food safety requirements. The yield is equivalent to that of hanging mussels from the Netherlands and Ireland, and the mussels grow faster than mussels from bottom cultivation (mussels ready for market in 15 months instead of 24 months).

Technical Challenges

The big challenge is designing installations that can withstand the sometimes extreme North Sea environment. Investing in robust, easy to maintain and safe systems, including vessels, is a must, according to the researchers, although this will push up overall production costs. In addition, it turned out that the sizing and organisation of the wind farms is not optimal for food production, which is logical as they were not designed for that purpose. The distance from the coast also poses a challenge to technical, practical and economic feasibility. When designing future wind farms, this should be taken into account in order to be able to combine both activities.

Economic Feasibility

“Edulis has given us a clear picture of the costs and benefits of mussel farming in the North Sea” says Margriet Drouillon, Senior Business Developer Aquaculture and Blue Life Sciences at Ghent University. “If we really want mussel farming on a commercial scale, we will have to put a lot of effort into developing knowledge about the economic feasibility of mussel farming in the wind farms. We will also explore other paths for multiple use of space at sea, with due attention to sustainable production”.

Three Additional Challenges for Aquaculture in the North Sea

Ghent University and the Research Institute for Agriculture, Fisheries and Food (ILVO) launched the ‘North Sea Aquaculture’ project in 2017, with Edulis and Value@Sea as subsidiary projects. They joined forces with their partners RBINS/OD Nature, Belwind, Brevisco, C-Power, Colruyt Group, DEME Group, Lobster Fish, and Sioen Industries. North Sea Aquaculture tackled three challenges:

  • Innovative shellfish and seaweed farming techniques;
  • Efficient use of space in the Belgian North Sea;
  • The development of a market for new regional marine products.

 

More info on Edulis:
Margriet Drouillon, UGent, 0484 13 95 39, margriet.drouillon@ugent.be