Does washing of exhaust gases from ships contribute to acidification of the southern North Sea?

Sulphur Oxides (SOx) in atmospheric ship emissions resulting from the burning of fuel are known to be harmful to human and ecosystem health. Since January 1st, 2020, the International Maritime Organisation (IMO) further lowered the limit for sulphur content in ship fuel, resulting in an increased number of exhaust gas cleaning systems (scrubbers) installed on board of ships. These systems reduce the sulphur content in the air emissions, but some discharge the SOx directly in the water. Here they contribute to ocean acidification and potentially create problems for a range of marine organisms. The Royal Belgian Institute of Natural Sciences used a biogeochemical model to quantify the potential impact in the southern North Sea. The results showed that the largest changes occur in areas of high traffic density, such as along the Belgian and Dutch coasts and in the vicinity of large harbours, where the changes are sufficiently big to contribute to environmental degradation and a loss of economic potential.

Belgian waters are characterised by very dense maritime traffic. The image depicts ships anchored in an anchor zone, waiting for access to a nearby port (©RBINS/MUMM).

Sulphur Oxides (SOx) in atmospheric ship emissions, resulting from the burning of fuel, are known to cause respiratory problems, lead to more acid rain and contribute to ocean acidification. As such they are harmful to both human and ecosystem health. To address this problem, the International Maritime Organisation (IMO) further lowered the limit for sulphur content in ship fuel to 0.5% since January 1st, 2020 (from 4.5% in 2005-2011 and 3.5% in 2012-2019). The regulations are even more strict in the North Sea Sulphur Emission Control Area, to which the intensively navigated Belgian waters belong, where the sulphur concentration in the fuel cannot exceed 0.1%. To comply with the regulations, solutions include the use of low sulphur fuel and the application of other methods that limit the SOx air emissions caused by the burning of high sulphur fuel to the same extent.

Scrubbers

Due to the price difference between high and low sulphur fuels, the installation of exhaust gas cleaning systems known as scrubbers, is economically more cost-effective than reducing the sulphur content in the fuel (in normal economic conditions). Therefore, the new regulations tend to result in an increased number of scrubbers being installed on board of ships. Scrubbers are devices that ‘wash’ the exhaust gases of ships and remove certain particulates or gases from it, in this case the sulphur oxides. The resulting wash water can either be collected on board (closed-loop scrubber) or be discarded in the open sea (open-loop scrubber), whereas hybrid scrubbers can switch from open to closed modes. The cheaper open-loop scrubbers are more commonly applied than closed-loop scrubbers, leading to a displacement of the sulphur emissions from the air to the water.

Density map of marine traffic (adapted from marinetraffic.com), showing the main shipping routes and the very dense traffic in the study area (black frame).

Ocean acidification

Despite the positive effect of scrubbers on air pollution, questions arise on their potential impact on the marine environment. When the wash water from open-loop scrubbers is discharged into the sea, the SOx are neutralized by the sea water. This however lowers the pH of the sea water (a lower pH means more acidic water) and thus contributes to the acidification of the ocean. This process adds to the ongoing climate-change driven ocean acidification resulting from the uptake of atmospheric CO2. Negative effects of ocean acidification have already been observed affecting marine organisms such as clams, oysters, prawns and even fish. More acidic waters compromise the creation of shells and skeletons and can lead to the dissolution of existing structures. Furthermore, some studies have shown effects on the ability of fish to smell, hear and see, and their general cognitive functioning. More acidic waters may also have an economic impact for fisheries and aquaculture, as quality loss has been shown for certain species of prawns and clams, in terms of taste, texture, appearance and nutritious properties.

Situation in the southern North Sea

On behalf of the Federal Public Service Mobility and Transport, the Royal Belgian Institute of Natural Sciences performed a study in which an advanced biogeochemical model was used to quantify the potential impact of SOx discharges from maritime traffic on water acidification in the southern North Sea. “In the English Channel and the Southern North Sea, the results show a pH decrease between 0.004 and 0.010 pH units (on a scale of only 14 units) among different maritime traffic scenarios” says Valérie Dulière, lead author of the study. “In areas of high traffic density, such as the shipping lanes along the Belgian and Dutch coasts and in the vicinity of large harbours, the pH changes can be 5 to 12 times larger than average. The modelled changes indicate a potential negative impact on the water quality in ports, estuaries and coastal waters” Dulière adds.

Maps of yearly averaged pH values as estimated by the model in the study of Dulière et al. (2020) for different scenarios of SOx contribution from marine traffic. The redder, the more acidic the water. The top left figure shows the reference scenario with no SOx contribution from maritime traffic, while the top right (2019_15%) shows the same traffic density but with 15% of ships using an open-loop scrubber. The 2020- and 2030-scenarios below assume traffic densities as expected (under normal economic circumstances) in 2020 and 2030, with the 35%- and 0%-scenarios representing 35% and 0% of the fleet being equipped with open-loop scrubbers, resulting in four combinations (2020_35%, 2020_0%, 2030_35% and 2030_0%). From these simulations it becomes clear that an increase in maritime traffic does not really influence the ocean acidity (compare 2020_0% and 2030_0% with reference), while an increase in the use of open-loop srubbers does (compare 2019_15%, 2020_35% and 2030_35%) with reference. An increase of both the maritime traffic and the use of open-loop scrubbers obviously has the highest impact (compare 2030_35% with other scenarios).

The estimated pH decrease attributed to the shipping sector is also significant when compared to the ongoing acidification resulting from climate change (0.0017-0.0027 pH units per year). The pH change in response to SOx pollution due to shipping with open-loop scrubbers is 2 to 4 times bigger than the contribution of climate change when averaged over the whole study area, and up to 10 to 50 times bigger in more local areas. The impact of ocean acidification due to maritime traffic should therefore be considered in ecosystem assessment studies, together with climate change.

The full report of the study can be consulted here: Potential impact of wash water effluents from scrubbers on water acidification in the southern North Sea_Final report.

Videos of the presentation of the study are also available:

part1_Scientific background and study context

part2_Methodology and assumptions

part3_Results and conclusions

Given the important modelling conclusions, a precautionary approach is recommended. Policy, science and industry continue to work together to find ways to reduce the impact of sulphur compounds in the emissions and wash water discharges of ships.

 

After this study was completed, the COVID-19 crisis started to reshape the year 2020 in an unforeseen way. It is observed that the ship traffic density estimation for the year 2020 on which the calculations were based to estimate the quantity of SOx in emissions and wash water discharges is lower than expected. Nevertheless, this study still brings some very useful information on how the use of open-loop and hybrid (set in open-mode) scrubbers can contribute to the acidification of the southern North Sea, in a business as usual situation. It is also noted that the current unfavorable economic climate led to the cancellation of many orders for scrubber installations, and it is hoped that the companies concerned will consider switching to the use of low sulphur fuel when resuming normal operations.

The Royal Belgian Institute of Natural Sciences is also heavily involved in the monitoring of the sulphur emissions from ships at sea. More information on this can be found on the new website of the aerial survey team, the video that focuses on sulphur emission monitoring, and in the annual report 2019.

Public consultation ‘Zeeboerderij Westdiep’

Codevco V BV has submitted an application for the authorization and permit for the construction and operation of a seafood farm in the Belgian part of the North Sea, and has applied for an authorization to carry out a geotechnical and geophysical survey during the preparatory phase. This application is subject to an environmental impact assessment procedure.

The application, the non-technical summary, the environmental impact statement and a concept of the appropriate assessment can be consulted from 9 May to 7 June 2020 at the offices of MUMM at Brussels (Vautierstraat 29, 1000 Brussels; mdevolder@naturalsciences.be; tel 02/627 43 52) or at Ostend (3de en 23ste Linieregimentsplein, 8400 Ostend; jhaelters@naturalsciences.be; tel. 059/24 20 55), by appointment only and during office hours between 9:00 am and 5:00 pm, and depending on the prevailing measures imposed by the government with regard to Covid-19. The application can also be consulted at every coastal community, during office hours. The list of locations and corresponding contact details can be found here: Coastal_Communities_2020.

The application is also available electronically:

Any interested party may submit its views, comments and objections to Ms Brigitte Lauwaert by letter or email until 22 June 2020:

MUMM Attn. Ms. Brigitte Lauwaert

Vautierstraat 29, 1000 Brussels

blauwaert@naturalsciences.be

 

Update August 2020:

A fisheries report is now also available: Fisheries Report_Seafood Farm Westdiep

Aerial Surveys over the North Sea in 2019

Framed in the national aerial survey programme, the scientific service MUMM performed a total of 246 flight hours over the North Sea in 2019. This contribution lists the most important results, with focus on the core tasks: surveillance of marine pollution and monitoring of the marine environment. Thirteen cases of operational discharges by ships have been observed, and suspect sulphur values have been measured in the smoke plumes of 51 vessels. With this sulphur emission monitoring effort, Belgium keeps on playing an international pioneering role which keeps on arousing interest, even from far outside Europe. The plane also successfully participated in an internationally coordinated surveillance mission of the oil and gas installations in the central part of the North Sea. Furthermore, some important marine mammal counts were performed, and windmill construction sites monitored.

The Coast Guard plane in action. © Tim Corbisier

Overview of Surveillance Flights

A total of 246 flight hours have been performed in the framework of the national North Sea aerial survey programme in 2019. This programme is organised by the scientific service MUMM (Management Unit of the Mathematical Model of the North Sea) of the Royal Belgian Institute of Natural Sciences, in collaboration with the Ministry of Defence. Most of the flight hours concerned national flights (183 hours):

  • 173 hours in the context of the Belgian Coastguard
    • 129 hours of pollution control: 67 hours for the detection of discharges of oil and other harmful substances (MARPOL Annex I, II and V) and 62 hours for the monitoring of sulphur emissions from ships (enforcement of MARPOL Annex VI / SECA – Sulphur Emission Control Area, see below);
    • 43 hours of fishery control, on behalf of the Flemish Fishery Inspection Services;
    • 1 hour in response to a specific call for the search of a whale
  • 10 hours for marine mammal monitoring

A smaller part (63 hours) was spent on international missions, of which 35 hours on sulphur emission monitoring in Dutch waters on behalf of the Dutch competent authorities, 24 hours on the Tour d’horizon-mission for surveillance of offshore oil and gas installations in the North Sea (an international mission framed in the Bonn Agreement), and 4 hours for an international oil combating exercise organised by the Netherlands.

Operational Discharges from Ships

Fortunately, the Belgian waters have not been affected by pollution as a result of shipping accidents (accidental pollution) in 2019. On the other hand, 13 cases of operational discharges from ships have been observed:

  • One minor oil spill was observed in front of Ostend. However, the slick could not be linked to a ship.

  • Twelve spills of other harmful substances than oil (MARPOL Annex II). In one of these cases, a detection by night, a link could be made with a ship. A port state control was requested in the next port of call. This made clear that it consisted of a permitted discharge of palm oil (MARPOL Annex II).

These figures show that although the number of oil spills has greatly decreased in the last decade (first graph), the number of spills of other harmful substances is still a common problem, and even appears to rise (second graph).

Oil Pollution in Belgian Ports

During transit (from Antwerp airport – the home base of the aircraft – to the North Sea), 2 oil spills have been observed in the port of Antwerp. These spills were immediately reported to the competent authorities to ensure follow-up.

Monitoring of Sulphur Emissions from Ships at Sea

In order to monitor compliance with the stringent fuel sulphur content limits for ships sailing in the North Sea Sulphur Emission Control Area, 96 hours of sniffer flights were conducted over the Belgian and Dutch waters. Of the 1241 vessels that were inspected at sea, 51 showed suspiciously high sulphur values in their exhaust plumes. These cases were systematically reported to the competent maritime inspection services for a further follow-up in port.

At this moment Belgium is one of the few countries performing such offshore monitoring of sulphur emissions of individual ships. The obtained experience and results, also in terms of subsequent port inspections of suspected vessels and pursuit of offenders, have led to considerable interest in Europe and beyond. In this context, the RBINS scientists participated in various international forums in 2019, including the « Shipping and Environment Conference » in Sweden, the « Sulphur Experts Meeting » in Denmark and the « European Maritime Safety Agency Surveillance Training » in the Netherlands. At  the BONN Ministerial Meeting 2019 The Belgian experience was a major driver to include MARPOL Annex VI in the work package area of the Bonn Agreement.

Fortunately, most emission plumes from ships at sea are less black and polluting than this one. © RBINS/MUMM
Approaching a ship for sulphur emission control. © RBINS/MUMM

International ‘Tour d’Horizon’ Mission

During the annual TdH-mission for the surveillance of offshore platforms in the central part of the North Sea (in Dutch, German, Danish, Norwegian and British waters), performed in the framework of the Bonn Agreement, the Belgian surveillance aircraft detected 32 pollutions, 23 of which concerned oil detections that could be directly linked to offshore installations. 4 other detections could also be linked to platforms but could not be observed visually due to heavy fog. The 5 remaining detections – 3 oil spills, 1 detection of another harmful substance, and 1 detection of an unknown pollutant – were made without a vessel or platform in the vicinity. All these detections were systematically reported for further follow-up to the competent coastal State, in accordance with agreed international procedures.

Oil spill connected to an offshore oil installation, as observed from the surveillance aircraft during the international TdH mission in 2019. © RBINS/MUMM

Participation in International Oil-Combating Exercise

In April, the aircraft took part, together with the Dutch and German coastguard aircrafts, in an international oil combating exercise organized by Rijkswaterstaat (The Netherlands). The purpose of this exercise was to improve the knowledge on impact and efficiency of the use of dispersants, with manual removal being the first option in in Belgium and The Netherlands). The aircraft played an important role in mapping and monitoring the dispersed versus the naturally weathered oil spill at sea.

Participation of the aircraft in the international oil-combating exercise in the Netherlands. © RBINS/MUMM

Marine Mammal Monitoring off the Belgian Coast

In June, 2 seals and 52 harbour porpoises (including 6 juveniles) were spotted. August brought along 5 seals and 42 harbour porpoises (also including 6 juveniles). The resulting estimate of average density was 0.72 (0.41-1.27) and 0.62 (0.38-1.00) harbour porpoises per km² of sea area, respectively, or about 2,500 and 2,100 animals.

In 2019, no less than 3 new offshore wind farms were built in het Belgian part of the North Sea. The marine mammal monitoring campaigns are carried out to monitor the environmental effects of these wind farms. The aircraft monitored to what extent the permit conditions regarding the correct placement of a « bubble curtain » were respected, which ensures a reduction in noise disturbance for marine mammals among others.

Monitoring of construction activities in the wind farms: the use of a bubble curtain during piling activity. © RBINS/MUMM
The Coast Guard plane in action. © Tim Corbisier

 

In order to clearly and completely summarise for the press and public the activities of the RBINS (MUMM) surveillance aircraft, the legal frameworks within which these activities take place, and the technical background of the tasks carried out, MUMM published a new website in March 2020. Be sure to watch the video that focuses on sulphur emission monitoring, one of the trademarks and pioneering tasks of the Belgian air surveillance.

Tracking Predators to Protect Southern Ocean Ecosystems

An international group of scientists has mapped the « hotspots » of biodiversity in the Southern Ocean around Antarctica. As animals go to places where they find food, the researchers managed to do this by collating electronic tracking data of more than 4,000 individuals of 17 species of predators. By regularly analysing such large datasets, we can better protect vulnerable ecosystems.

In a rapidly changing world, we need to know which areas warrant protection from existing, developing and forthcoming threats. This is hard to do objectively in the vast realm of the oceans, and particularly so in the remote Southern Ocean around Antarctica. A paper published this week in the journal Nature (together with a companion data paper in the journal Scientific Data) describes a novel solution to this problem : using electronic tracking data from birds and marine mammals. The Antarctic Biodiversity Portal managed by RBINS was closely involved in collecting, cleaning up and standardizing these data.

The solution relies on a simple principle: animals go to places where they find food. So, identifying areas of the Southern Ocean where predators most commonly go also tells us where their prey can be found. For example, humpback whales and penguins will go to places where they can feed on krill, whereas elephant seals and albatrosses go where they can find fish, squid, or other prey. If all these predators and their diverse prey are found in the same place then this area has both high diversity and abundance of species, indicating that it is of high ecological significance.

Adélie Penguin (Pygoscelis adeliae) equipped with electronic transmitter (©Judy Rebekah Clarke)
Southern Elephant Seal (Mirounga leonina) equipped with electronic transmitter (© Clive R. McMahon)

Joining Antarctic Forces

The project was conducted by the Scientific Committee for Antarctic Research (SCAR), with support from the Centre de Synthèse et d’Analyse sur la Biodiversité, France, WWF-UK and many other partners.

SCAR engaged its extensive network of Antarctic researchers to assemble existing Southern Ocean predator tracking data.  The result : an enormous database containing tracking data of over 4000 predators from 17 species, collected by more than 70 scientists across 12 national Antarctic programs. « The SCAR Antarctic Biodiversity Portal, that is managed by the Royal Belgian Institute of Natural Sciences (RBINS), was closely involved in collecting, cleaning and standardizing these data. » says RBINS scientist Dr. Anton Van de Putte, who co-authored both papers. He acts as a Belgian scientific representative for both SCAR and the Commission for the Conservation for Antarctic Marine Living Resources (CCAMLR).

4,060 tracks of Antarctic predators from 17 different species. The data indicate the « hotspots » where Antarctic predators go in search of prey (© Hindell et al. 2020, Nature)

Even this impressive dataset does not directly represent all Southern Ocean predator activity, because it is impossible to track all the breeding colonies of every species. « To overcome this, sophisticated statistical models were used to predict the movements for all known colonies of each of the 17 predator species across the entire Southern Ocean. These predictions were combined to provide an integrated map of those areas used by many different predators with diverse prey requirements. » Van de Putte adds.

Current and Future Areas of Ecological Significance

The most important of these areas – areas of ecological significance – are scattered around the Antarctic continental shelf and in two wider oceanic regions, one projecting from the Antarctic Peninsula engulfing the Scotia Arc, and another surrounding the sub-Antarctic islands in the Indian sector of the Southern Ocean.

Currently, the existing and proposed Marine Protected Areas largely overlap with the Areas of Ecological Significance. (© Hindell et al. 2020, Nature)

Marine Protected Areas (MPAs) are a crucial tool in the conservation management toolbox. Existing and proposed MPAs are mostly found within the areas of ecological significance, suggesting that they are currently in the right places. Yet when using climate model projections to account for how areas of important habitat may shift by 2100, the existing MPAs with their fixed boundaries may not remain aligned with future important habitats. Dynamic management of MPAs, updated over time in response to ongoing change, are therefore needed to ensure continued protection of Southern Ocean ecosystems and their resources in the face of growing resource demand by the current and future generations.

Van de Putte : « This kind of study indicates the importance of international cooperation and sharing scientific data. Only by combining the data and jointly analyze them, we can come to these results. I look forward to also sharing our future findings and thus to keep contributing to the preservation of the unique Antarctic ecosystems. »

Watch the timelapse video of the data: youtu.be/BUgYD1dQwBI

Seals in Need of Rest: Keeping Distance is Crucial

Seals have become more and more numerous along our coast in recent years, which also increases the chance that people bump into one on the beach. Many people erroneously assume that a seal on dry land is in trouble anyway, but mostly this is not the case. When a holiday period overlaps with a period when more seals are resting on the beach, the scientists of the Royal Belgian Institute of Natural Sciences (RBINS) and Sea Life Blankenberge are inundated with worried phone calls. Yesterday was such a day … Unfortunately, many reports also mention that the animals are being harassed by humans. Tragically, often by people with good intentions, who do not realize that their actions mainly cause stress to the animals, resulting in disturbance and sometimes even lower survival chances. The advice is therefore always that seals on the beach should be given rest, with a distance of at least 20 m from the animals. Whether the seal is sick or healthy makes no difference.

Grey seals © RBINS/Kelle Moreau

Nowadays, more seals are reported along the Belgian coast every year, following the positive trend recorded in the Netherlands, N France and SE England. Especially Harbour seals Phoca vitulina (even small groups) are seen daily, and the Grey seal Halichoerus grypus has also become established. It is perfectly normal that many people do not know how to interpret the presence of a seal on the beach, for them it is an unknown phenomenon. However, coastal areas, and therefore beaches, form an important part of the habitat of seals; they are not dolphins or whales that cannot survive outside the water. When a seal is on the beach, it does not necessarily mean that it is in trouble. More often than not this is not the case.

Sick versus Healthy

In order not to stress seals unnecessarily, but also in order not to overload emergency services and animal shelters, it is important that beachgoers are not only aware that seals nowadays form an integral part of the fauna of the Belgian North Sea and beaches, but also know how to distinguish healthy from sick seals. More and more coastal municipalities are putting effort into providing such information on panels and banners. In summary, healthy seals often adopt the typical « banana posture » (with head and tail raised), usually show no wounds, are alert and growl when approached. Sick or injured seals look much more passive, they adopt a « flat posture », show wounds and/or cough. In the latter case, and certainly in the case of a combination of these symptoms, it is worth contacting local emergency services or a specialised shelter (in Belgium, this is Sea Life Blankenberge).

Grey Seals at the End of Winter

At the end of winter, however, there may also be seals on the beach that are essentially healthy but deviate from the typical image of a healthy seal. These are often adult males of the Grey seal that are exhausted after the mating season, and may therefore appear skinny and adopt a « flat posture ». Grey seals mate mainly in December – January, and the males engage in impressive and energy-consuming fights to gain the preference of the females. Especially late and inexperienced males – who didn’t get what they were looking for during the peak of the mating season and have kept up their mating efforts and fighting spirit for longer – can now lie tired on our beaches. All they need is rest. Giving them food is out of the question, and they don’t need to be made wet (again: they’re not dolphins or whales). Moreover, because of their size, weight and impressive teeth and claws, it is not obvious to take care of these animals in a shelter. Enjoy their presence at a distance, suppress the urge for a « sealfie » (seal-selfie), and be sure to keep your dog(s) on a leash on a beach where there is a seal!

More information about seals in Belgium can be found in the annual marine mammal reports of the Royal Belgian Institute of Natural Sciences (available for 2014 to 2018, the 2019 edition is in preparation), at http://www.marinemammals.be/reports.

First Launch of the New Research Vessel Belgica

The future Belgian research vessel Belgica was launched for the first time on 11 February 2020 from the Freire Shipyard in Vigo, Spain. An important milestone following the keel laying, the equivalent of the laying of the foundation stone of a building, just under a year ago. The ceremony took place in the presence of the various project partners: the shipyard, the Federal Science Policy Office (BELSPO), Defence and the Royal Belgian Institute of Natural Sciences (RBINS). Now the ship will be further finished and provided with all the necessary equipment. The delivery of the ship in Zeebrugge is scheduled for the last quarter of this year. Then it will officially be put into service. The cost of the project amounts to approximately 54 million euros (VAT included).

The new RV Belgica is launched for the first time, Vigo (Spain), 11 February 2020 (© Belgian Navy/Jorn Urbain)

The first launch of a new ship (where the ship is literally transferred from land to water for the first time) is always considered a joyful event, which is celebrated with a formal ceremony. This includes speeches by the various project partners on the Spanish and Belgian sides, the actual launch, the signing of the book of honour and the exchange of gifts.

After a welcome speech by Mr Guillermo Freire, General Manager of Freire Shipyard, the representatives of the Belgian delegation were the first to address those present. Mr Pierre Bruyere, Chairman of the Executive Committee of BELSPO, outlined the path that led to the current collaboration and contract with Freire Shipyard, and stressed that in 2020 we will also be celebrating 50 years of continued funding of marine sciences through BELSPO’s research programmes. The arrival of the new RV Belgica will be a highlight of this celebration. Mrs Patricia Supply, General Director of RBINS, emphasized among other things the long history of marine scientific research at this institute. Many milestones were covered: from the first Belgian Antarctic expedition (1897-1899) led by Adrien de Gerlache, through the first standardised sampling of Belgian marine fauna (1898-1939) by Gustave Gilson, to the accommodation of the MUMM scientific service (Management Unit of the Mathematical Model of the North Sea) within RBINS in 1997. Division-Admiral Yves Dupont, head of the Systems Division of the General Directorate of Material Resources of Defence, then praised the way in which the close cooperation of the past years within the framework of the current RV Belgica led to an increasing knowledge of the sea, which also contributes to the success of the activities of the Navy. The knowledge that the new RV Belgica will acquire, and the continued exchange of scientific and military information, will also remain indispensable in this context.

Finally, the Belgian representatives congratulated Freire Shipyard not only on the successful way in which they are implementing the new RV Belgica project, but also on the 125th anniversary of the shipyard, which will also be celebrated in 2020.

Mrs Patricia Supply, General Director of RBINS, addressed those present (© Belgian Navy/Jorn Urbain)

Background and Milestones of the Construction and Naming Process

After 36 years of service, with more than 1,000 scientific expeditions and more than 900,000 kilometres travelled on the counter (>22.5 times around the earth), the current Belgian oceanographic research vessel A962 Belgica (built in 1984) was in need of replacement. Therefore, on 28 October 2016, the federal government decided to build a new modern research vessel. The contract for the design and construction of the ship was awarded by the Minister of Science Policy to the Spanish shipyard Freire Shipyard (Vigo) and the Norwegian ship designer Rolls-Royce Marine AS (which in the meantime became part of the Norwegian Kongsberg Maritime).

The Directorate General Material Resources (DG MR) at the Ministry of Defence has a solid knowledge of tendering procedures. The latest acquisition of two new patrol vessels and the renewal of the mine countermeasure capacity, among other things, fitted nicely with the acquisition of this new research vessel. It therefore went without saying that the Ministry of Defence and the Ministry of Science continued to work closely together on the acquisition and monitoring of the design and construction process. Since the contract was awarded, a great deal has been achieved: the detailed plans for the vessel were drawn up, scale models were tested, and on 13 February 2019 the cutting of the steel for the construction of the new vessel was started. The keel laying took place on 27 March 2019. Less than a year later, the new RV Belgica can be launched for the first time! Afterwards, the ship will be further finished and provided with all the necessary equipment. At the end of 2020, as planned, it will be delivered in its home port of Zeebrugge to support the marine research community for the next thirty years. After 36 years of loyal service, the current RV Belgica will then end its research activities for good.

In the meantime, the name of the Belgian oceanographic ship was also determined. After a naming competition with several phases (submission of proposals by secondary schools, first selection of admissible names by a professional jury, followed by a public online vote) it became clear that the new ship will honour the Belgian tradition and will also go through life as RV Belgica. The Federal Minister for Science Policy announced this on 25 April 2019 in the presence of the winning class 1LA of Athénée Maurice Destenay in Liège, after which students and minister could enjoy a sea voyage on the current A 962 Belgica.

Ready for launch! From left to right: Division-Admiral Yves Dupont (Defence), Mr. Pierre Bruyere (BELSPO), Mrs. Patricia Supply (RBINS) and Mr. Guillermo Freire (Freire Shipyard) (© RBINS/Kelle Moreau)

Future of the New RV Belgica

Compared to its predecessor, the new RV Belgica is larger (71.4 m compared to 50 m) and offers more space to the scientists (a doubling of laboratory space with a capacity to take up to 28 scientists on board). The new RV Belgica will guarantee compliance with our country’s national and international obligations and ensure continuity in the support of marine sciences. In this way, the new RV Belgica will continue the important role of the current A962 Belgica in monitoring the state of the Belgian and surrounding marine waters, as well as in fundamental scientific research.

The new Belgica will also be equipped with state-of-the-art scientific equipment that will allow samples to be taken up to a depth of 5,000 m. The new vessel will also be a silent vessel (important for fisheries research, among other things) with a light ice reinforcement to be able to conduct research in Arctic areas during the summer. Although the North Sea will remain the main focus area of the new vessel, the research area extends further than the current RV Belgica: northwards to above the Arctic Circle, further south including the Mediterranean and Black Seas and westwards to the Atlantic Ocean. The ship will have an autonomy of 30 days and will carry out up to 300 days of research at sea each year.

The new RV Belgica before the launch (© Belgian Navy/Jorn Urbain)

International Dimension

The international dimension of science will also be given due attention in the agenda of the new RV Belgica. Just as the current RV Belgica already formed part of the European EUROFLEETS network (in which international scientists can obtain shipping time on foreign research vessels), the new RV Belgica will also remain active within this network. Also under the umbrella of the European Marine Board, Belgium (represented in this dossier by Dr. Lieven Naudts, ‘New RV’ project manager for RBINS) participated in a study on the status of the European fleet of research vessels, and helped determine the key role these vessels play now and in the future in the pursuit of a better understanding of the oceans, the functions they can perform for us, and the preconditions within which human activities can be permitted. A ‘European Marine Board Position Paper’ on this theme was published in the autumn of 2019. Since June 2019, Dr. Naudts also assumes the position of chairman of the European Research Vessel Operators group (ERVO).

Thanks to the new RV Belgica and the European framework, Belgium remains at the forefront of sea-related science and technology, helping to ensure that Europe can remain a world leader in marine science and exploration.

The new RV Belgica during the festive launch (© Belgian Navy/Jorn Urbain)

The ‘NewRV’ project became reality thanks to the collaboration between the Royal Belgian Institute of Natural Sciences (RBINS), the Ministry of Defence and the Federal Science Policy Office (BELSPO). The new Belgica will be owned by the Belgian State, represented by the Federal Science Policy Office (BELSPO). Operational management will be provided by the Royal Belgian Institute of Natural Sciences (RBINS) in collaboration with Defence and a private operator.

More information about the ‘NewRV’ project and the technical specifications of the new ship can be consulted at http://www.belspo.be/NewRV, where the construction process can also be followed.

Mysterious dolphin skull in Braine-le-Château (Brabant wallon)

On Saturday 25 January 2020, a hiker was very surprised when he found a peculiar animal skull along the road, with meat and fat remains still on it. The scene of the event was Braine-le-Château, a small green community in the province of Brabant wallon.

© M. Kyramarios

Not special? Yes, as it appeared to be the skull of a dolphin, and the hiker happened to be someone with knowledge on the subject. It is the skull of a Common dolphin (Delphinus delphis) or a Striped dolphin (Stenella coeruleoalba), two species whose skulls are not easily distinguishable from each other. These species only rarely end up in the North Sea, their normal Atlantic range extending only to the western part of the English Channel.

How did this skull end up along a small road close to the E19 between Nivelles and Brussels? Wild speculation … That the animal swam up the Scheldt, and then reached the site via tributaries, through locks, can be excluded. That the animal was dragged to the site after being stranded by, for example, a fox, seems equally unlikely.

All information that can contribute to solving this mystery is welcome at kmoreau@naturalsciences.be.

Rare beaked whale that washed ashore in Ostend turns out to be healthy

On Wednesday evening 15 January a Sowerby’s beaked whale washed ashore in Ostend. An autopsy showed that the animal was probably still alive when it got into trouble in our coastal waters, no clear cause of death could be determined. Since shallow coastal waters are an unsuitable habitat for beaked whales, reports of the species have always been rare in Belgium. To date, only five previous cases of strandings of beaked whales in Belgium are known.

© RBINS/Jan Haelters

In the evening of 15 January 2020, late beachgoers found a stranded beaked whale near the eastern breakwater of Ostend. Unfortunately, the animal (which was first reported as a harbour porpoise, and later as a bottlenose dolphin) was already dead, and thanks to an efficient cooperation with the Ostend police, fire brigade and technical services, the carcass could quickly be transferred to the buildings of the Royal Belgian Institute of Natural Sciences (RBINS) in Ostend. From there, on Thursday morning 16 January, it left for the Faculty of Veterinary Medicine of Ghent University, where an autopsy was performed around noon. Meanwhile it was clear that it was an immature female of the Sowerby’s beaked whale (Mesoplodon bidens), with a length of 2.88 m and a weight of 240 kg.

Beaked Whales in Belgium

It is not often that pointed beaked dolphins are observed in the North Sea or washed ashore along the North Sea coast, which is not surprising. After all, beaked whales prefer the deep sea, and stay far away from coasts. A large water depth is more important than the absence of land, as the diet of beaked whales consists of all kinds of deep-sea organisms (mainly cephalopods, but also deep-sea fish and crustaceans). Thus, around islands in deep-sea areas, where water depths increase rapidly with distance from the coast, beaked whales can be observed relatively close to the coast. However, the shallow waters of the North Sea (especially the southern part) cannot be considered their familiar habitat.

In Belgium only five previous strandings of Sowerby’s beaked whales are known (and no observations of live animals at sea). In two cases these were mother-calf pairs: in August 1835 in Ostend, in August 1933 in Wenduine (mother + calf), in August 1954 in De Panne (pregnant female), in February 1969 in Heist and in October 1972 in Bredene (mother + calf). All these animals washed ashore alive, but died shortly afterwards (the calf of 1972 at Bredene survived a few days in the Harderwijk dolphinarium, in the Netherlands).

Cause of death?

« The autopsy found no evidence of a recent trauma that could be cited as cause of death (e.g. collision, drowning in a net), and confirmed that the animal was healthy until shortly before death ». explains Jan Haelters, marine biologist and marine mammal expert at RBINS. « It therefore seems plausible that the Ostend beaked whale was still alive when it got into trouble in the coastal waters, and that the grazes on the animal were caused by scraping of the body against the stones of the breakwater. However, nothing was found in the stomach (not even plastic or other items), which illustrates that the animal had not found food for a while and that it had no bright future anyway. All beaked whales on the Belgian list probably underwent the same fate ».

© RBINS/Jan Haelters

Some of the skulls of Belgian beaked whales are stored at RBINS, which also has an extensive collection of fossil remains of beaked whales. Here they remain available for scientific research (e.g. https://www.naturalsciences.be/en/news/item/2880), and occasional exhibition (e.g. https://www.naturalsciences.be/en/news/item/17771/). The skeleton of the new Ostend beaked whale will be used at the University of Ghent as didactic material in the veterinary training.

Environmental impacts of offshore wind farms in the Belgian part of the North Sea – Marking a decade of monitoring, research and innovation

Since 2008, 318 offshore wind turbines have been installed in the Belgian part of the North Sea. Both the construction technology and the environmental impact monitoring have changed a lot during the past decade. In a new report, the scientific partners in the monitoring programme summarise what we have learned so far about the longer-term effects onto a variety of ecosystem components, from benthic invertebrates to birds and marine mammals. As time series grow longer, our ability to detect impacts increases. Some striking results include that artificial hard substrata such as wind turbine foundations cannot be considered to be equivalent alternatives for species-rich natural hard substrata, that wind farms deter some bird species but attract others, that the number of stranded harbour porpoises correlates with periods of high intensity underwater sound and that offshore wind farms only subtly changed fishing activity without creating lower catch rates of the main target species.

Evolving construction practices and monitoring programme

From 2008 to 2018, 318 offshore wind turbines with a total installed capacity of 1556 MW have been constructed in the Belgian part of the North Sea. The technology and construction practices have drastically changed during this decade. These changes include an evolution in foundation types (from gravity-based foundations and jacket-foundations to XL monopile wind turbines), an expansion of the geographical area for wind farm construction (towards more offshore waters) and an increase in the size and capacity of the wind turbines (from 3 MW turbines with a 72 m rotor diameter to 8.4 MW turbines with a 164 m rotor diameter).

The monitoring programme WinMon.BE has documented and evaluated the environmental impact of the construction and operational phases of the wind farms during this entire period. It evolved to be the basis for an in depth understanding of longer-term effects onto a variety of ecosystem components, from benthic invertebrates over fish to birds and marine mammals. The new report takes stock of what we have learned so far and zooms into a selection of innovative monitoring and impact mitigation techniques.

Ecosystem impacts

Sediment sampling revealed consistent impacts on the sediment composition and macrobenthic communities (invertebrates living in and on the sea floor, such as worms, shellfish, crustaceans and starfish). Sediment fining was only observed very close to the jacket foundations, while no conclusive results were found in terms of organic enrichment. Higher densities and diversity (species richness) of macrobenthic organisms were found in closer vicinity of the wind turbines. The phenomenon was most pronounced at the Thornton Bank. This confirms the hypothesis that impacts are specific to sites, foundation-types or even individual turbines, which highlights the importance of a continued monitoring of the macrobenthos at the different turbine types.

With respect to the macrofauna that is living/growing on the foundations, a decade of monitoring revealed three succession stages. In a first, relatively short, pioneer stage (~2 years), the installation of the turbine foundations was followed by rapid colonization which differed between locations and foundation types. This was followed by a more diverse intermediate stage characterized by large numbers of suspension feeders (such as Jassa herdmani, a small amphipod crustacean). A third, and possibly climax stage, with a lower species diversity and frilled anemone Metridium senile and blue mussel Mytilus edulis as the dominant species, was reached after nine to ten years. Earlier reports on offshore wind turbines as biodiversity hotspots generally refer to the species-rich second stage of succession, so these should be read with caution as the rich biodiversity now appears to be short-lived and disappears again in a later stage (after about six years in this study). This underlines that artificial hard substrata cannot be considered as an alternative for the species-rich natural hard substrata.

Birds and mammals

Comparing pre-construction seabird distribution data with post-construction distribution data showed a significant avoidance of the wind farm area by northern gannet Sula bassana (-98%), common guillemot Uria aalge (-60-63 %) and razorbill Alca torda (-75-80%). In contrast, attraction to the wind farm could be demonstrated for great cormorants Phalacrocorax carbo, herring gulls Larus argentatus and greater black-backed gulls Larus marinus. Importantly, most of these effects were no longer noticeable at distances over 0.5 km away from the wind farm edges. How these effects impact individual fitness, reproductive success and survival of the birds remains yet unknown.

It is demonstrated that the Belgian offshore wind farms are visited by migrating Nathusius’ pipistrelles Pipistrellus nathusii. The study sheds a preliminary light on the meteorological conditions that favour bat activity in the southern North Sea and the possible risk of colliding with offshore wind turbines. Wind speed (most detections at wind speed of maximally 5 m/s), wind direction (peak in occurrence for east- and southeasterly winds), temperature and barometric pressure seem to influence bat activity in the wind farms. Wind speed seems to have the largest influence on bat activity at sea. These insights offer the possibility to reduce the risk of collision for bats, for example by curtailing the turbines when certain weather conditions occur during the migration season.

The high impulsive sound levels produced during offshore wind farm construction (pile driving) result in displacement and disturbance of harbour porpoises Phocoena phocoena, the most common cetacean in the Southern North Sea. Our analysis reveals a higher occurrence of harbour porpoises strandings on Belgian beaches during months with a high intensity of impulsive sound. This preliminary analysis suggests an increased mortality of harbour porpoise during periods of wind farm construction and will be subject to future in-depth analysis. In the past few years, sound mitigation techniques hence have received a lot of attention and various techniques are now commercially available. In this report, we quantify how Big Bubble Curtains and stationary resonator systems (AdBm Noise Mitigation System) were applied to lower the sound pressure during wind farm construction in Belgian waters.

Impact on fisheries

Because fishing is prohibited within the Belgian offshore wind farms (ca. 140 km² operational), the overall surface area available for fisheries is decreasing as offshore wind farms are proliferating. It was demonstrated that the offshore wind farms only subtly changed the fishing activity (effort, landings and catch rate of the top 10 species, including the main target species sole Solea solea and plaice Pleuronectes platessa of the Belgian and Dutch beam trawl fleet in Belgian waters over the period 2006-2017. Evidently, a remarkable decrease in fishing effort was however observed inside the offshore wind farms, suggesting that local fishermen have adopted efforts to adapt to the exclusion of the wind farm zone from their fishing grounds and have increased their fishing effort at the edges. While catch rates of sole in the vicinity of the operational offshore wind farms remained comparable to catch rates in the wider area, catch rates of plaice were higher around some operational wind farms.

 

The Monitoring Programme WinMon.BE is a cooperation between the Royal Belgian Institute of Natural Sciences (RBINS), the Research Institute Nature and Forest (INBO), the Research Institute for Agriculture, Fisheries and Food (ILVO) and the Marine Biology Research Group of Ghent University, and is coordinated by the Marine Ecology and Management team (MARECO) of the Royal Belgian Institute of Natural Sciences.

The complete report, as well as the older monitoring reports, can be consulted at http://odnature.naturalsciences.be/mumm/en/windfarms/.