Scientific cruise to Svalbard with RV Oceania

Scientific research on the North Sea or on the Arctic Sea, the similarities are striking! Passionate scientists want to understand how the sea works to be as well prepared as possible for the changes that the world is experiencing. A report of 9 days on board of the Polish oceanographic research vessel Oceania.

RV Belgica and RV Oceania

Just like Belgium, Poland has its own research vessel. The three-master RV Oceania is property of the Polish Institute for Oceanographic Research (IOPAN) and has approximately the same age (°1985) and length (just under 50 m) as our own RV Belgica. The vessel is mainly used for scientific research in the Baltic Sea. Once a year, however, it leaves for the far north to study the impact of climate change on the Arctic Sea in the fjords of Svalbard. From Wednesday 26 July to Friday 4 August 2017, the 24 Polish crew members were accompanied by a Canadian journalist, and the Belgian science communicator Sigrid Maebe.

Scientists and crew of RV Oceania during AREX 2017

The RV Oceania captain, Piotr Woźniak, knows our RV Belgica well. In the nineties he took part in the festivities of the Belgian Navy in Zeebrugge, where his military vessel docked next to RV Belgica. Also when the 100th anniversary of the scientific expedition of the old Belgica to Antarctica was celebrated, in 1997 in Antwerp, he visited our research vessel. Both vessels are very similar, but the fact that RV Oceania is a sailing ship, and therefore has a narrower hull, leads to a tighter barge.

RV Oceania is equiped with all possible equipment to take water samples, collect organisms (plankton in the water column or benthos on the seabed), or to optically characterise the water colour which allows to determine the properties of the water. Due to the limited space, the Polish scientists can only collect samples and freeze or fix them, but they cannot study them on board. Later, on land, they will need half a year to a year to analyse all the samples of this campaign.

Research in Hornsund fjord

For this scientific cruise ‘AREX’2017’ (Arctic Expedition 2017), RV Oceania left Poland mid-June, to sail all along Norway to the island group of Svalbard. At the end of August, 80 days later, the vessel will arrive back in Poland with hundreds of samples and measurements. Then the number “30”, which is painted next to a polar bear on the side of the vessel, will also be changed: the 31st voyage of RV Oceania to Svalbard will be completed!

RV Oceania in Hornsund Fjord
The 31st RV Oceania trip to Svalbard is almost completed

I boarded RV Oceania in Longyearbyen, the capital of Svalbard, for a 9-day scientific cruise to the Hornsund Fjord. The aim of this part of the journey was to investigate how far the influence of the Atlantic Ocean in this fjord in the southern part of Svalbard can be felt. The Hornsund Fjord is actually the first area where Atlantic water from the south enters the Arctic Sea. Year after year, the chief scientist Sławomir Kwaśniewski sees the Atlantic water penetrate deeper into the fjord, while the seawater gets noticably warmer. The plankton community is also shifting: Atlantic species of copepods, jellyfish and sea gooseberries are more often observed in the fjord. The entire ecosystem changes with the supply of this warmer water. The scientists are therefore very happy when they also find real Arctic species in their plankton net. This annual survey by the IOPAN Institute provides a long time series with measurements and analyses that are indispensable for understanding the effects of climate change.

Multinet to collect plankton samples at different depths
Gelatinous plankton

Polar Station

The Polish government also has a research station on land in Svalbard: the Polish Polar Station, also in the Hornsund fjord. It is a magical place, but walking in the neighbourhood is not possible without a firearm because you always have to be prepared for a meeting with a polar bear (Ursus maritimus)! During the summer months, about 30 scientists and technicians are stationed here, in the dark winter months only a dozen. They investigate the glacier that is actually in their backyard. Furthermore, they constantly measure the magnetic radiation and meteorological conditions of the area and study the living conditions and the eating pattern of the colony of little auks (Alle alle, a funny flying seabird species).

Polish Polar Station in Hornsund Fjord

The two “paparazzi”, as the journalist and I were laughingly referred to, were allowed to go ashore for one day to get to know the scientists Danek and Kasia. That morning they checked the batteries of the cameras that were placed at the nests to register how the parents come to feed the chicks. The chicks themselves are under a pile of stones and you cannot see them on the camera images. In the afternoon, the researchers caught a number of adult birds to collect food samples. For this, they “spoon” the freshly caught plankton from the crop of the little auks. Apparently the chicks are mainly fed with a certain larval stage (stage 5) of the plankton species Calanus glacialis. It is unbelievable how these birds, under water, can distinguish the different plankton stages. And also aim well enough to catch them!

Little auks with cameras pointed at their nests

RBINS-researchers

In the station I also met Alexandra, who studies several glaciers in the Hornsund fjord with a sonar. She spends hours in a small boat, right next to the glacier, in order to get a ‘picture’ of the part of the glacier that is submerged, using sound waves. Alexandra is Polish, lives and works in Italy and knew the work of a number of OD Nature colleagues (Vera Van Lancker and Giacomo Montereale Gavazzi) who do similar research with sonars, but targeting the bottom of the Belgian part of the North Sea. Joana, who came on board for the next part of the cruise, also had good contacts with RBINS scientists who study crustaceans (Claude De Broyer and Cédric d’Udekem d’Acoz). And so the good reputation of the RBINS researchers, also so far from home, is proven again!

Polar bear, whales, plankton

Apparently we were very lucky during the 9-day trip. This was partially due to the beautiful weather (sun, little wind, and a nice 5 ° C). The weeks before there was only fog in the fjord and heavy wind on the high seas, making it difficult to collect samples and completely hiding the overwhelming view! We also saw a polar bear in one of the smaller bays. He had feasted on a large prey, the remains of which were still on an ice floe. It was a mighty sight: a polar bear that slipped from an iceberg into the seawater and – surprisingly quickly – swam away from us, moving his head from left to right, as if he wanted to smell how far or near the human danger was. Even the seasoned Svalbard scientists were happy with this unique encounter!

Polar bear

In the fjord a humpback whale (Megaptera novaeangliae) revealed its presence twice. He had found a place in the fjord, close to a glacier, that was teeming with nutritious plankton. So why move?

Humpback whale

More whales were spotted in the high seas (1000 meters deep!), where we carried out continuous optical measurements in the water for 48 hours. How fine it was to collect water samples at 3 o’clock in the morning, and hear and see how whales or dolphins pass by our ship! It was quite a challenge to force myself to go to sleep in the evening, and risk missing beautiful sceneries and whales. The pros and cons of the eternal Nordic sun at this time of the year!

Collecting water samples on the high seas

Unspoiled nature?

The life on board of RV Oceania was strikingly similar to that on board of RV Belgica (except the Polish language, that is a big challenge!). Fresh soup every day, an ice cream every now and then, small but cozy cabins, and every day the challenge to take a shower and get dressed in small spaces that move from front to back and from left to right … The big difference only becomes obvious when you are outside, on the deck. No grey horizon full of ships on one side, and coastal apartment buildings on the other. On the high seas you only see a grey horizon without ships, while the fjords feature incredibly beautiful sunlit views of hills and mountains, eternal snow and the not so eternal glaciers. The glaciers are getting smaller at a terrifying speed. The sea charts in the bridge of RV Oceania were updated in 2014, and again turned out to be no longer correct! Shocking to realise how untouched nature changes as a result of the ill-considered behaviour of people thousands of miles away …

The images of fantastic surroundings, mountains, glaciers, birds, plankton, whales and the polar bear are forever imprinted in my memory and I will continue to encourage people to learn to understand climate change and take it seriously! Do not hesitate to join us!

Text and images: Sigrid Maebe

More information on IOPAN, RV Oceania, and the research they are involved in can be consulted here. RV Oceania will leave Poland for ‘AREX’2018’ – the 32nd voyage of RV Oceania to Svalbard – on 14 June 2018, only to return on 29 August (schedule of RV Oceania in 2018).

Also read the story of the Canadian journalist Hannah Hoag.

Aerial Surveys over the North Sea in 2017

A total of 222 flight hours has been performed at sea in the framework of the Belgian North Sea aerial survey programme in 2017. In and nearby the Belgian marine areas 11 spillages were observed, of which 10 operational slicks and one accidental spill. During the sulphur emission control flights at sea 49 ships were detected with a high fuel sulphur content. During an international mission for the detection of spillages in the central part of the North Sea where the offshore oil and gas platforms are located, 26 other oil spills were detected. The Scientific Service Management Unit of the North Sea Mathematical Models of the Royal Belgian Institute for Natural Sciences, is responsible for the aerial surveys over sea in Belgium.

The Belgian surveillance aircraft. © RBINS/K. Moreau

In 2017 a total of 222 flight hours has been performed at sea in the framework of the Belgian North Sea aerial survey programme. Of these flight hours, 187 were performed in the framework of the Belgian coastguard in and nearby Belgian waters, 19 were spent on an international mission for the detection of spillages near oil and gas installations in the central part of the North Sea (the so-called Tour d’horizon mission), and 16 were used for marine mammal monitoring. Of the 187 coastguard hours, 40 were spent on fishery control, two on joint coastguard missions, and 145 on pollution control (MARPOL enforcement at sea). In the last category, 80 hours were specifically dedicated to sulphur emission control flights, and 65 hours to the control of deliberate discharges of oil and other harmful substances.

Operational Discharges

In 2017 a total of 10 operational ship discharges were detected:

  • In two cases an oil slick was detected. Both slicks consisted of minor volumes with a limited impact for the marine environment. This result is in line with the trend observed in recent years, of a systematic reduction in annually observed operational oil discharges.

    Number of operational oil spills observed per flight hour. © RBINS/SURV
  • In five cases another harmful substance than oil was detected. Only once however a link could be made with a vessel; it concerned an alleged MARPOL Annex II violation in British waters. The alleged violation was reported to the British authorities for further follow-up. In the four other cases no ship was found in the vicinity of the slicks.

    Number of operational contaminations by other harmful substances observed per flight hour. © RBINS/SURV
  • In the three remaining cases it was impossible to visually verify the substance of the slick due to darkness or bad visibility.

Accidental Marine Pollution

In 2017 only one accidental oil pollution was detected. It concerned oil which got accidentally released from the ‘Fluvius Tamar’ wreck which sunk in January in nearby British waters. The Belgian surveillance aircraft furthermore also performed aerial monitoring of other shipping incidents in and nearby Belgian waters. Luckily however no further accidental marine pollution was observed:

  • Following a collision between the bulk carrier ‘Coral Opal’ and the tanker ‘Silent’ in June 2017, the aircraft performed an aerial monitoring flight on site but no pollution was detected.
  • In August 2017 another flight was carried out following an alert of the Blankenberge beach rescue service about a small weathered heavy fuel oil slick observed in nearshore waters. During this flight a large part of the coastal waters was scanned but no oil could be found. The initially reported patches of heavy fuel were thought to be weathered oil remains from the ‘Flinterstar’ incident (2015), which probably got trapped in the seabed and were accidentally released in the summer of 2017 due to works near the port of Zeebrugge.
  • A third aerial monitoring flight was performed following the stranding of the tanker ‘Seatrout’ in the Western Scheldt near the turn of Bath in September 2017, but again no accidental pollution was detected.

    The Seatrout is pulled from a sandbank in the turn of Bath (Western Scheldt) by tuggers. © RBINS/SURV

Sulphur Emission Monitoring

The 80 hours spent monitoring sulphur emission compliance at sea were spread over 51 so-called ‘sniffer’ flights. In this way, the sulphur content in the smoke plume of 870 ships was effectively monitored. 49 of these ships showed suspiciously high sulphur values, and were systematically reported to the competent maritime inspection services for further follow-up in port (‘Port State Control’).

Atmospheric pollution due to sulfur emissions from ships is of growing importance in air surveillance. © RBINS/SURV

International Mission (Tour d’Horizon)

During the annual international campaign for the detection of spillages in the central part of the North Sea where the oil and gas installations are located, executed in the framework of the Bonn Agreement, 26 oil slicks were detected, of which 22 were connected to platforms, and four were found at sea, without a clear link to a platform or ship. All findings were reported to the competent authorities of the affected coastal States.

Pollution in Belgian Ports

During transit flights in 2017, two oil slicks were detected in the Port of Antwerp. These findings were immediately reported to the competent port authorities for follow-up.

Conference on Marine Sands, June 1st 2018 (10-16h). Museum of Natural Sciences, Brussels

The Royal Belgian Institute of Natural Sciences, Ghent University, Geological Survey of the Netherlands and FPS Economy have the pleasure of inviting you to the conference ‘Marine sands as a precious resource’. During this conference you will get the opportunity to get acquainted with a newly developed decision support system guiding long-term sand extraction in the Belgian and southern Netherlands part of the North sea. The consortium will guide you through the origin, distribution and dynamics of marine sands to inform on resource exploitation in a more sustainable way. Throughout the conference interactive demonstrations will be held on the newly developed tools: volumetric 3D pixel (‘voxel’) models, numerical impact models accounting for geological boundary conditions, a geological data portal and the resource decision support module. A Virtual Reality side event is also foreseen. Free participation, but register before May 26. E-mail to vvanlancker@naturalsciences.be.

Project info

Conference invitation

Public consultation for maritime innovation and development platform

On January 19th 2018, the POM West-Vlaanderen has introduced a request for an environmental permit for the exploitation of a maritime innovation and development platform at a distance of about 500 meters of the coast of Ostend (see map). The platform will be exploited until 2033.

The request, the environmental impact study and the non-technical summary can be consulted from March 9th till April 7th 2018, on weekdays from 9.00-17.00h in the offices of MUMM (Gulledelle 100, 1200 Brussels, 4th floor room 431, person to contact: Mia Devolder (02/773 21 27, mdevolder@naturalsciences.be) or in the offices of MUMM in Ostend: 3de en 23ste Linieregimentsplein, 8400 Ostend, person to contact: Jan Haelters (jhaelters@naturalsciences.be, 059/24 20 55) on reservation only.

The electronic version of the documents is also available :

Application

Environmental impact study

Everybody who is concerned can send his point of view, remarks and objections by registered letter to MUMM, Mia Devolder, Gulledelle 100, 1200 Brussels until April 23th 2018.

The request can also be consulted in the offices of the local authorities of every coastal city, on working days and on appointment.

Local authorities

Environmental impact of offshore windfarms in Belgium

To monitor the ecological impact of wind turbines at sea, our institute coordinates an extensive monitoring programme that detects the environmental effects. The programme is fully operational since 2008. A new report that describes the most recent results, has just become available.

As of 2016, 232 wind turbines are operational in the Belgian Part of the North Sea, with a total capacity of 870 Megawatt. To reach the national target of the production of 13% renewable electricity by 2020, the number of wind turbines in this area is planned to rise to 500. Together these will have a capacity of 2200 Megawatt, covering up to 10 % of the total electricity needs of Belgium. With 238 km² reserved for offshore wind farms in Belgian waters and 344 km² in the adjacent Dutch Borssele area, ecological impacts are inevitable.

Cover of the new monitoring report (Image KBIN)

The Royal Belgian Institute of Natural Sciences coordinates the monitoring, and specifically covers hydro-geomorphology, underwater noise, hard substrate invertebrates, radar detection of seabirds, marine mammals and socio-economic aspects. For soft substrate invertebrates, fish and seabirds, the programme relies on the additional expertise of Ghent University, the Institute for Agricultural and Fisheries Research (ILVO) and the Research Institute for Nature and Forest (INBO).

Due to the size of the area and the multitude of disciplines, comprehensive monitoring of the ecosystem in the wind farms remains challenging. The scientific follow-up focuses mainly on the disciplines that provide the most relevant information for the management. To safely differentiate between natural and anthropogenically induced variability, the programme is continuously being optimised.

The national research vessel Belgica plays a major role in the monitoring of the environmental impact of wind farms (Photo Jorn Urbain/Belgian Navy)

Some remarkable results from the new report

Numbers, densities and biomass of invertebrates and fish living on or associated with the sea floor: the results indicate that the soft sediment ecosystem in between the turbines (at distances > 200 m) has not changed dramatically five to six years after construction, and that species assemblages within the offshore wind farms are mainly structured by temporal variability playing at larger spatial scales (e.g. temperature fluctuations, hydrodynamic changes, plankton blooms). However, plaice seems to be positively affected by the offshore wind farms. This could possibly be linked to locally increased food availability and/or the exclusion of fisheries inside the wind farms.

Biodiversity of natural hard substrates (e.g. gravel beds) versus artificial substrates (e.g. turbine foundations and scour protection): as natural hard substrates harbour a much higher species number and also more unique species than the artificial substrates, it seems that artificial hard substrates cannot act as equal alternatives for the loss of natural hard substrates.

Research into the effect of piling noise on cod (Photo Annelies De Backer/ILVO)

Impact of underwater noise caused by pile driving activities on fish and marine mammals: in a field experiment with caged cod, the scientists detected a steep increase in swim bladder injuries with decreasing distance from the sound source. Additionally, many internal bleedings and a high degree of abnormal swimming behaviour were observed after piling, all hints for a reduced survival rate in the long term. With the current sound limits applicable to Belgian waters, negative effects of this type of underwater noise can occur in fish within a radius of 750 m from the pile driving location. During piling, harbour porpoise detections decreased by up to 75% up to 20 kilometre from the location of the piling event. Simultaneously, porpoise detections nearly doubled at larger distances, which may be due to active attempts of these animals to escape from the underwater noise.

Great black-backed gull in offshore windpark (Photo Nicolas Vanermen/INBO)

Presence and behaviour of birds: Four species were shown to avoid the wind farm on the Thornton-bank (northern gannet, little gull, black-legged kittiwake and common guillemot), while three others (great black-backed gull, herring gull and sandwich tern) proved to be attracted. When zooming into the behaviour of some species, a continued study of the observed shifts (e.g. decrease of the time spent flying, foraging on fauna growing on the foundations) may shed a new light onto the anticipated collision risk of large gulls with wind turbines. Besides seabirds, also large numbers of non-seabirds are known to migrate at sea. As the victims disappear in the water and cannot be counted, a bird radar is used to unravel the migration patterns. In the future, the recorded bird fluxes will be analysed with an explanatory model, and the collision potential will also be estimated for such birds.

Grey seals versus men

Over the past weeks, horrendous messages appeared in the press about grey seals that ‘shall’ attack swimmers along our coastline. Some nuancing is required.

Grey seal, 23 January 2007 (copyright KBIN)

Those that followed the media over the last two weeks must have noticed it : newspapers, websites and news programs on TV and radio warned for grey seals, which were portrayed as murderous creatures that make our beaches and coastal waters unsafe and will soon start violating tourists.

It all started with an article in La Dernière Heure (DH) « Il va y avoir des attaques de phoques en Belgique » (« There will be attacks of grey seals in Belgium »; Wednesday 9 August), based on an interview with our science communicator Kelle Moreau. Also the front page of the paper unequivocally and alarmistically advertised: « Alerte aux phoques tueurs à la côte belge » (« Warning for killing seals along the Belgian coast »). Het Laatste Nieuws (HLN) copied the message (« Seals will attack swimmers at the coast »), be it in a drastically reduced form in which particularly the sensation remained. Subsequently, the unfortunate message was spread widely, both by the French and the Dutch-speaking press.

Grey seal and a dog that is allowed too close, 14 March 2017 (copyright Roland François).

We want to nuance a number of things :

The intention of the article in La Dernière Heure was to inform about the strandings of marine mammals and rare fishes on the Flemish beaches in 2016. Predation by grey seals was mentioned as one of the causes of death of stranded harbour porpoises, in the context of which the journalist asked whether it can be excluded that a grey seal would ever attack a human being. Our science communicator responded that such an event cannot be excluded, but that such cases would rather qualify as accidents rather than manifestations of aggression or attempted predation. Grey seals are big and strong animals, with substantial teeth and claws, that could easily wound a human being as a consequence of « disturbance » (of a resting animal on a beach, a mother with cub, …), « confusion » (a foraging animal in turbid water may mistake a human being for something else?) or even of playful behaviour. However, our biologists believe that the chance of such an interaction with a grey seal in our waters remains very small (but exists), and that panic is unnecessary. We must definitely not avoid our coastal waters and beaches, and the grey seal is absolutely not an unwanted guest on our coast. The only message is that we should realise that grey seals are predators, that we should have a healthy respect for these animals, and best leave them alone.

Grey seal and swimmer (copyright Diederik D’Hert)

The fact that grey seals have harbour porpoises on their menu was also shown for the first time by researchers of our institute, after a few porpoises washed ashore in 2011 with wounds that – after analysis – appeared to have been inflicted by grey seals. Initially, this news caused great disbelief. Only after confirmation by analyses of foreign scientists, this new phenomenon was widely accepted.

Annual report strandings 2016

As part of the implementation of the Royal Decree on marine species protection in the Belgian national waters, annual reports on observations and strandings of marine mammals in Belgium are compiled.

The new marine mammal report (download on http://www.marinemammals.be/reports) presents an overview of marine mammals and remarkable fish washed ashore in Belgium in 2016. It also focusses on the causes of death, revalidation and release of animals that were taken into care, and briefly introduces the research on the influence of offshore windmill parks on the harbour porpoise.

The most remarkable stranding of 2016 undoubtedly concerned a narwhal, an Arctic animal that was last observed in the North Sea almost 70 years ago. Also two humpback whales were seen, and a basking shark and two ocean sunfishes washed ashore.

With 137 animals, the number of harbour porpoises that washed ashore was again very high. The major causes of death were incidental catch in fishing gear and predation by grey seals. Harbour porpoises were shown to avoid an area up to a distance of 20 km during the construction of offshore wind turbines.

White-beaked dolphins were reported on one day only, in contrast to bottlenose dolphins that were regular and prominent guests again. In April a severely decomposed male bottlenose dolphin washed ashore, followed by a heavily decomposed dolphin along the Scheldt a few days later. The species could not be determined anymore.

The number of strandings of dead and dying seals remained similar to previous years: six harbour seals, 11 grey and 12 unidentified seals. SEA LIFE Blankenberge took care of record high numbers: 15 grey and 24 common seals, including an albino animal. No less than 12 grey and 20 common seals could be returned to the wild after revalidation.

Monitoring of Sulphur emissions from ships: soon over the entire North Sea?

In the Activity Report 2016 of our North Sea aerial survey programme published earlier this year, MUMM already mentioned the recent purchase of a new instrument, a so-called sniffer sensor, that allows MUMM to monitor the sulphur emissions from ships at sea with the surveillance aircraft.

These new “sulphur monitoring flights” of MUMM were initiated in the framework of the European pilot project ‘CompMon’, with the aim to facilitate and contribute to the enforcement of the stringent sulphur emission regulations as determined in Annex VI of the MARPOL 73/78 Convention and the European Sulphur Directive. The limitation of sulphur emissions from ships at sea is in fact a European top priority, for various important public health related and environmental reasons (fine dust, acid rain, climate change).

In 2016 MUMM monitored the sulphur emission of ca. 1300 ships at sea. For 120 of these ships suspect sulphur values have been measured (= ca. 10%). Each suspicious observation was systematically reported to the maritime inspection service of the Belgian Directorate-General for Shipping, for a further follow-up in port – if needed in cooperation with other competent port authorities in the framework of the European ‘Port State Control’ network.

The results and experiences gained from these flights have now been presented and discussed at the annual meeting of OTSOPA, the technical working group of the Bonn Agreement, held in Norway at the end of May 2017. The Bonn Agreement is the mechanism by which the North Sea States, and the European Union, work together to prevent and combat maritime pollution in the North Sea. It is under this agreement that the aerial surveillance efforts above the North Sea have been coordinated since the early ‘90s, although the initial aim was mainly to detect and combat oil spills at sea.

Following MUMM’s presentation on the remarkable results of the sulphur monitoring flights above the North Sea, OTSOPA agreed on the importance of this new type of surveillance mission. OTSOPA furthermore decided to submit a request to the next Contracting Parties meeting of the Bonn Agreement later this year to approve the start-up of sub-regional sulphur emission monitoring operations above the entire North Sea, coordinated in the framework of this agreement.

Earlier in May 2017, MUMM also presented the same offshore sulphur monitoring results to the annual meeting of the North Sea Network of Investigators and Prosecutors (NSN), who have decided to give a high priority to the prosecution of sulphur emission offences.

With these international efforts our country currently plays a leading role on the matter. In the meantime, MUMM continues to execute regular sulphur monitoring flights at sea.

Belgium’s Secretary of State for the North Sea Philippe De Backer reacts very positively: “With these controls Belgium really performs a pioneer role. It helps us keeping our North Sea clean. Also internationally these efforts are being noticed. It is therefore good that these controls will be extended over the entire North Sea region.

 

Back to the North !

The first two Bewick’s Swans equipped with a GPS tag during past summer in the tundra of Yamal but at the same site a few days apart, have very recently left their wintering site separated one of the other by … 8000 km!

The first to take the northern route is the adult female 832X. She left Poyang Lake area (southeast China) on 03/03/2016. She had arrived in the region on 25/11/2015 and has successively visited the Sai Hu lakes, Longhu and Longgan lakes. So she stayed a total 99 days near the Yangtze River before resuming her migration back to the north.

Cygnes de Bewick hivernat dans la région du Lac Poyang, 29/11/2014 (photo Didier Vangeluwe)
Bewick’s Swans wintering in the Poyang Lake region, 29/11/2014 (photo Didier Vangeluwe).

Between 03/03/2016 and 07/03/2016, 832X has traveled 1400 km to the north-northeast with a maximum peak of 215 km in 3 hours. Since she is in halt on the Yellow River in the district of Donghan, 250 km from the border with Mongolia. This is exactly where 865X, another Bewick’s Swan from Yamal having wintered in the Yangtze region, had stopped in last autumn migration.

The second Bewick who started the spring migration is 854X. It is a second-winter male that had (after years of questions !) indicated us the route to the Evros Delta. 854X had arrived in the Evros on 12/12/2015.

Zone d'hivernage du Cygne de Bewick 854X dans le Delta de l'Evros, à la frontière entre la Grèce et la Turquie.
Wintering area between 12/012/2015 – 07/03/2016 of Bewick’s Swan 854X in the Evros Delta at the border between Greece and Turkey.

After 86 days of back and forth between Greece and Turkey, the Evros river making the border between the two countries, 854X flew in the late afternoon of 07/03/2016, heading northeast. In a step of 12 hours of continuous flight and a peak of 265 km traveled in 3 hours, 854X flew over the Black Sea in almost straight line to land on the morning of 08/03/2016 in the Nature Reserve of Chernomorsky, just east of the Bay of Tendra, Ukraine.

Twelve hours later, 854X set off again, this time eastward, for a flight of three hours maximum. At nightfall, he landed at sea, a few km off the Gulf of Khorli, a site where gather in the summer thousands of Mute Swans in flightless moult.

Les golfes de Khorli accueillent en été plusieurs milleirs de Cygnes tuberculés en mue flightless (photo Didier Vangeluwe).
The Gulf of Khorli hosts during the summer thousands of Mute Swans in flightless moult, 01/08/2009 (photo Didier Vangeluwe).

The GPS positions received suggests that during the night, 854X drifted 11 km towards the east. At dawn on 09/03/2016, he took off for a short 90 km flight which led he to the impressive hyper saline lagoons of Sivash, north of Crimea. He stayed there four days and was located several times in cropland area close to water bodies. Most likely he was feeding there.

Les lagunes hyper salines de Sivash sont un site de halte primordial des limicoles en migration prénuptiale, (photo Didier Vangeluwe).
854X has stopped from 09/03/2016 until 13/03/2013 in the hyper saline lagoons of Sivash. These lagoons are key staging areas for shorebirds during spring migration, 26/07/2008 (photo Didier Vangeluwe).

854X then resumed flight to the east for about 40 km. New stop at night, but this time on Sea of ​​Azov. And new drift during the night, up to 24 km from the coast this time. This morning, 14/03/2016, 854X resumed its journey shortly after 05:00 am (local time) always towards the east. Six hours later he was located 290 km to the east, probably when flying. 854X was then close to Beisug liman where he has stopped 51 days during post-breeding migration 2015, prior to arrive in the Evros Delta. Will he halt there again or will he continue his journey eastward to Russia and Kazakhstan?

To be continued !